7 research outputs found

    Engineering a Software Environment for Research Data Management of Microscopy Image Data in a Core Facility

    No full text
    This thesis deals with concepts and solutions in the field of data management in everyday scientific life for image data from microscopy. The focus of the formulated requirements has so far been on published data, which represent only a small subset of the data generated in the scientific process. More and more, everyday research data are moving into the focus of the principles for the management of research data that were formulated early on (FAIR-principles). The adequate management of this mostly multimodal data is a real challenge in terms of its heterogeneity and scope. There is a lack of standardised and established workflows and also the software solutions available so far do not adequately reflect the special requirements of this area. However, the success of any data management process depends heavily on the degree of integration into the daily work routine. Data management must, as far as possible, fit seamlessly into this process. Microscopy data in the scientific process is embedded in pre-processing, which consists of preparatory laboratory work and the analytical evaluation of the microscopy data. In terms of volume, the image data often form the largest part of data generated within this entire research process. In this paper, we focus on concepts and techniques related to the handling and description of this image data and address the necessary basics. The aim is to improve the embedding of the existing data management solution for image data (OMERO) into the everyday scientific work. For this purpose, two independent software extensions for OMERO were implemented within the framework of this thesis: OpenLink and MDEmic. OpenLink simplifies the access to the data stored in the integrated repository in order to feed them into established workflows for further evaluations and enables not only the internal but also the external exchange of data without weakening the advantages of the data repository. The focus of the second implemented software solution, MDEmic, is on the capturing of relevant metadata for microscopy. Through the extended metadata collection, a corresponding linking of the multimodal data by means of a unique description and the corresponding semantic background is aimed at. The configurability of MDEmic is designed to address the currently very dynamic development of underlying concepts and formats. The main goal of MDEmic is to minimise the workload and to automate processes. This provides the scientist with a tool to handle this complex and extensive task of metadata acquisition for microscopic data in a simple way. With the help of the software, semantic and syntactic standardisation can take place without the scientist having to deal with the technical concepts. The generated metadata descriptions are automatically integrated into the image repository and, at the same time, can be transferred by the scientists into formats that are needed when publishing the data

    There and back again: RDF as a bridge to domain-platforms like OMERO

    No full text
    This poster explores the journey towards making OMERO compliant with the FAIR (Findable, Accessible, Interoperable, and Reusable) principles, addressing the challenges and potential solutions in the context of bioimaging data management

    MDEmic in a use case for microscopy metadata harmonization: Facilitating FAIR principles in practical application with metadata annotation tools [preprint]

    Get PDF
    While the FAIR principles are well accepted in the scientific community, the implementation of appropriate metadata editing and transfer to ensure FAIR research data in practice is significantly lagging behind. On the one hand, it strongly depends on the availability of tools that efficiently support this step in research data management. On the other hand, it depends on the available standards regarding the interpretability of metadata. Here, we introduce a tool, MDEmic, for editing metadata of microscopic imaging data in an easy and comfortable way that provides high flexibility in terms of adjustment of metadata sets. This functionality was in great demand by many researchers applying microscopic techniques. MDEmic has already become a part of the standard installation package of the image database OMERO as OMERO.mde. This database helps to organize and visualize microscopic image data and keep track of their further processing and linkage to other data sets. For this reason, many imaging core facilities provide OMERO to their users. We present a use case scenario for the tailored application of OMERO.mde to imaging data of an institutional OMERO-based Membrane Dye Database, which requires specific experimental metadata. Similar to public image data repositories like the Image Data Resource, IDR, this database facilitates image data storage including rich metadata which enables data mining and re-use, one of the major goals of the FAIR principles

    Micro-Meta App: an interactive tool for collecting microscopy metadata based on community specifications

    No full text
    For quality, interpretation, reproducibility and sharing value, microscopy images should be accompanied by detailed descriptions of the conditions that were used to produce them. Micro-Meta App is an intuitive, highly interoperable, open-source software tool that was developed in the context of the 4D Nucleome (4DN) consortium and is designed to facilitate the extraction and collection of relevant microscopy metadata as specified by the recent 4DN-BINA-OME tiered-system of Microscopy Metadata specifications. In addition to substantially lowering the burden of quality assurance, the visual nature of Micro-Meta App makes it particularly suited for training purposes

    QUAREP-LiMi: A community-driven initiative to establish guidelines for quality assessment and reproducibility for instruments and images in light microscopy

    Get PDF
    A modern day light microscope has evolved from a tool devoted to making primarily empirical observations to what is now a sophisticated , quantitative device that is an integral part of both physical and life science research. Nowadays, microscopes are found in nearly every experimental laboratory. However, despite their prevalent use in capturing and quantifying scientific phenomena, neither a thorough understanding of the principles underlying quantitative imaging techniques nor appropriate knowledge of how to calibrate, operate and maintain microscopes can be taken for granted. This is clearly demonstrated by the well-documented and widespread difficulties that are routinely encountered in evaluating acquired data and reproducing scientific experiments. Indeed, studies have shown that more than 70% of researchers have tried and failed to repeat another scientist's experiments, while more than half have even failed to reproduce their own experiments. One factor behind the reproducibility crisis of experiments published in scientific journals is the frequent underreporting of imaging methods caused by a lack of awareness and/or a lack of knowledge of the applied technique. Whereas quality control procedures for some methods used in biomedical research, such as genomics (e.g. DNA sequencing, RNA-seq) or cytometry, have been introduced (e.g. ENCODE), this issue has not been tackled for optical microscopy instrumentation and images. Although many calibration standards and protocols have been published, there is a lack of awareness and agreement on common standards and guidelines for quality assessment and reproducibility. In April 2020, the QUality Assessment and REProducibility for instruments and images in Light Microscopy (QUAREP-LiMi) initiative was formed. This initiative comprises imaging scientists from academia and industry who share a common interest in achieving a better understanding of the performance and limitations of microscopes and improved quality control (QC) in light microscopy. The ultimate goal of the QUAREP-LiMi initiative is to establish a set of common QC standards, guidelines, metadata models and tools, including detailed protocols, with the ultimate aim of improving reproducible advances in scientific research. This White Paper (1) summarizes the major obstacles identified in the field that motivated the launch of the QUAREP-LiMi initiative; (2) identifies the urgent need to address these obstacles in a grassroots manner, through a community of stakeholders including, researchers, imaging scientists, bioimage analysts, bioimage informatics developers, corporate partners, funding agencies, standards organizations, scientific publishers and observers of such; (3) outlines the current actions of the QUAREP-LiMi initiative and (4) proposes future steps that can be taken to improve the dissemination and acceptance of the proposed guidelines to manage QC. To summarize, the principal goal of the QUAREP-LiMi initiative is to improve the overall quality and reproducibility of light microscope image data by introducing broadly accepted standard practices and accurately captured image data metrics
    corecore