199 research outputs found
A study into genes encoding longevity in humans
The lifespan of an organism is determined by a complex network of environmental-, genetic- and stochastic factors. Each of these components contributes to the wide variability in lifespan between and within species. In recent years, it has been shown that 20-30 % of human lifespan is under genetic control. Furthermore, a number of longevity candidate genes have been identified. The majority of candidate genes have emerged from studies with model organisms, but also from the biology of human ageing. The objective of this thesis was to test the impact of the most prominent longevity candidate genes on the prevalence of age-related diseases and lifespan in humans. All studies presented in this thesis were performed within the Leiden 85-plus Study, which is a population-based prospective study of the oldest old. The results revealed that genetic variations in most of the candidate genes influence metabolism, prevalence of age-related diseases, cognitive functioning and lifespan. Therefore, the approach of analyzing the most prominent longevity candidate genes in humans, contributes to the identification of biological mechanisms that influence the prevalence of disease in old age and lifespan.LEI Universiteit LeidenPathofysiologie, epidemiologie en therapie bij verouderin
Runs of homozygosity do not influence survival to old age
Runs of homozygosity (ROH) are extended tracts of adjacent homozygous single nucleotide polymorphisms (SNPs) that are more common in unrelated individuals than previously thought. It has been proposed that estimating ROH on a genome-wide level, by making use of the genome-wide single nucleotide polymorphism (SNP) data, will enable to indentify recessive variants underlying complex traits. Here, we examined ROH larger than 1.5 Mb individually and in combination for association with survival in 5974 participants of the Rotterdam Study. In addition, we assessed the role of overall homozygosity, expressed as a percentage of the autosomal genome that is in ROH longer than 1.5 Mb, on survival during a mean follow-up period of 12 years. None of these measures of homozygosity was associated with survival to old age
Variants of the IL-10 gene associate with muscle strength in elderly from rural Africa: A candidate gene study
Recently, it has been shown that the capacity of the innate immune system to produce cytokines relates to skeletal muscle mass and strength in older persons. The interleukin-10 (IL-10) gene regulates the production capacities of IL-10 and tumour necrosis factor-α (TNF-α). In rural Ghana, IL-10 gene variants associated with different production capacities of IL-10 and TNF-α are enriched compared with Caucasian populations. In this setting, we explored the association between these gene variants and muscle strength. Among 554 Ghanaians aged 50 years and older, we determined 20 single nucleotide polymorphisms in the IL-10 gene, production capacities of IL-10 and TNF-α in whole blood upon stimulation with lipopolysaccharide (LPS) and handgrip strength as a proxy for skeletal muscle strength. We distinguished pro-inflammatory haplotypes associated with low IL-10 production capacity and anti-inflammatory haplotypes with high IL-10 production capacity. We found that distinct haplotypes of the IL-10 gene associated with handgrip strength. A pro-inflammatory haplotype with a population frequency of 43.2% was associated with higher handgrip strength (P = 0.015). An anti-inflammatory haplotype with a population frequency of 7.9% was associated with lower handgrip strength (P = 0.006). In conclusion, variants of the IL-10 gene contributing to a pro-inflammatory cytokine response associate with higher muscle strength, whereas those with anti-inflammatory response associate with lower muscle strength. Future research needs to elucidate whether these effects of variation in the IL-10 gene are exerted directly through its role in the repair of muscle tissue or indirectly through its role in the defence against infectious diseases
The effect of common genetic variation in 11β-hydroxysteroid dehydrogenase type 1 on hypothalamic-pituitary-adrenal axis activity and incident depression
Background: Accumulating evidence suggests that hyperactivity of the hypothalamic-pituitary-adrenal axis (HPA axis) is involved in depression. 11β-Hydroxysteroid dehydrogenase type 1 (11β-HSD1) converts inert cortisone to active cortisol and is implicated in HPA axis regulation in animal studies. The aim of our study was to identify polymorphisms in 11β-HSD1 gene (HSD11B1) with consistent associations with increased HPA axis activity and relate those polymorphisms to depression. Methods: Twelve single-nucleotide polymorphisms (SNPs), including 11 tagging SNPs, were selected using the HapMap database and genotyped in 4228 participants of the population-based Rotterdam Study. The outcome measures were salivary cortisol levels after awakening, 30 min later, at 1700 h, at bedtime, and plasma levels of androstenedione (in women only). SNPs that were significantly associated with cortisol as well as androstenedione levels were also related to incident depression. Results: rs11119328 was associated with higher cortisol saliva samples collected at bedtime as well as higher androstenedione levels (P value after correction for multiple testing: 0.01 and 0.04, respectively). Carriers of this polymorphism had an increased risk of an incident depression (hazard ratio 1.28, 95% confidence interval 1.03-1.59). Two other SNPs, which were in high linkage disequilibrium with rs11119328, were related to higher cortisol levels but not with androstenedione levels. Conclusions: We identified one SNP, which was associated with increased salivary cortisol levels at nadir as well as higher androstenedione levels. Moreover, this SNP was also associated with a higher risk of an incident depression. This suggests that 11β-HSD1 is implicated in human HPA axis regulation and susceptibility to depression. Copyrigh
Mental performance in old age dependent on cortisol and genetic variance in the mineralocorticoid and glucocorticoid receptors
Depression and cognitive decline have been associated with changes in circulating cortisol concentrations. Cortisol exerts its functions through mineralocorticoid (MR) and glucocorticoid (GR) receptors. However, data on the influence of variations in the MR and GR genes on depressive symptoms and cognitive functioning in older adults are scarce. Therefore, we explored the impact of MR-215G/C, MR-I180V, GR-ER22/23EK, GR-N363S, and GR-BclI polymorphisms on these end points in the population-based Leiden 85-plus Study. This prospective study includes 563 participants aged 85 years and older, with a mean follow-up of 4.2 years. In this study, high morning cortisol levels (per 1 SD cortisol) associated with impairments in global cognitive functioning (p=0.002) at baseline (age 85). These impairments were mainly attributable to lower attention (p=0.057) and slower processing speed (p=0.014). Similar effects were also observed during follow-up (age 85-90), where participants with higher cortisol levels (per 1 SD cortisol) had impaired global cognitive functioning (p=0.003), as well as impairments in attention (p=0.034) and processing speed (p=0.013). Changes in depressive symptoms were observed for the MR-I180V single-nucleotide polymorphism (SNP), where during follow-up the prevalence of depressive symptoms was higher in the 180V-allele carriers (p=0.049) compared to noncarriers. Dependent on these polymorphisms, no differences in overall and in specific domains of cognitive functioning were observed. In conclusion, the MR-I180V SNP has a specific effect on depressive symptoms, independent from cognitive functioning, and other polymorphisms in the MR and GR genes. In contrast, these genetic variants in the MR and GR genes do not influence cognitive functioning in old age
GiSAO.db: a database for ageing research
<p>Abstract</p> <p>Background</p> <p>Age-related gene expression patterns of <it>Homo sapiens </it>as well as of model organisms such as <it>Mus musculus</it>, <it>Saccharomyces cerevisiae</it>, <it>Caenorhabditis elegans </it>and <it>Drosophila melanogaster </it>are a basis for understanding the genetic mechanisms of ageing. For an effective analysis and interpretation of expression profiles it is necessary to store and manage huge amounts of data in an organized way, so that these data can be accessed and processed easily.</p> <p>Description</p> <p>GiSAO.db (Genes involved in senescence, apoptosis and oxidative stress database) is a web-based database system for storing and retrieving ageing-related experimental data. Expression data of genes and miRNAs, annotation data like gene identifiers and GO terms, orthologs data and data of follow-up experiments are stored in the database. A user-friendly web application provides access to the stored data. KEGG pathways were incorporated and links to external databases augment the information in GiSAO.db. Search functions facilitate retrieval of data which can also be exported for further processing.</p> <p>Conclusions</p> <p>We have developed a centralized database that is very well suited for the management of data for ageing research. The database can be accessed at <url>https://gisao.genome.tugraz.at</url> and all the stored data can be viewed with a guest account.</p
The Effects of Vitamin D Receptor Silencing on the Expression of LVSCC-A1C and LVSCC-A1D and the Release of NGF in Cortical Neurons
Recent studies have suggested that vitamin D can act on cells in the nervous system. Associations between polymorphisms in the vitamin D receptor (VDR), age-dependent cognitive decline, and insufficient serum 25 hydroxyvitamin D(3) levels in Alzheimer's patients and elderly people with cognitive decline have been reported. We have previously shown that amyloid β (Aβ) treatment eliminates VDR protein in cortical neurons. These results suggest a potential role for vitamin D and vitamin D-mediated mechanisms in Alzheimer's disease (AD) and neurodegeneration. Vitamin D has been shown to down-regulate the L-type voltage-sensitive calcium channels, LVSCC-A1C and LVSCC-A1D, and up-regulate nerve growth factor (NGF). However, expression of these proteins when VDR is repressed is unknown. The aim of this study is to investigate LVSCC-A1C, LVSCC-A1D expression levels and NGF release in VDR-silenced primary cortical neurons prepared from Sprague-Dawley rat embryos.qRT-PCR and western blots were performed to determine VDR, LVSCC-A1C and -A1D expression levels. NGF and cytotoxicity levels were determined by ELISA. Apoptosis was determined by TUNEL. Our findings illustrate that LVSCC-A1C mRNA and protein levels increased rapidly in cortical neurons when VDR is down-regulated, whereas, LVSCC-A1D mRNA and protein levels did not change and NGF release decreased in response to VDR down-regulation. Although vitamin D regulates LVSCC-A1C through VDR, it may not regulate LVSCC-A1D through VDR.Our results indicate that suppression of VDR disrupts LVSCC-A1C and NGF production. In addition, when VDR is suppressed, neurons could be vulnerable to aging and neurodegeneration, and when combined with Aβ toxicity, it is possible to explain some of the events that occur during neurodegeneration
The relationship between fertility and lifespan in humans
Evolutionary theories of aging predict a trade-off between fertility and lifespan, where increased lifespan comes at the cost of reduced fertility. Support for this prediction has been obtained from various sources. However, which genes underlie this relationship is unknown. To assess it, we first analyzed the association of fertility with age at menarche and menopause, and with mortality in 3,575 married female participants of the Rotterdam Study. In addition, we conducted a candidate gene study where 1,664 single nucleotide polymorphisms (SNPs) in 25 candidate genes were analyzed in relation to number of children as a measure of fertility. SNPs that associated with fertility were analyzed for association with mortality. We observed no associations between fertility and age at menarche (p = 0.38) and menopause (p = 0.07). In contrast, fertility was associated with mortality. Women with two to three children had significantly lower mortality (hazard ratio (HR), 0.82; 95% confidence interval (95% CI), 0.69–0.97) compared to women with no children. No such benefit was observed for women with four or more children, who had a similar mortality risk (HR, 0.93; 95% CI, 0.76–1.13) as women with no children. The analysis of candidate genes revealed four genes that influence fertility after correction for multiple testing: CGB/LHB gene cluster (p = 0.0036), FSHR (p = 0.023), FST (p = 0.023), and INHBA (p = 0.021). However, none of the independent SNPs in these genes predicted mortality. In conclusion, women who bear two to three children live longer than those who bear none or many children, but this relationship was not mediated by the candidate genes analyzed in this study
Fine-scale detection of population-specific linkage disequilibrium using haplotype entropy in the human genome
<p>Abstract</p> <p>Background</p> <p>The creation of a coherent genomic map of recent selection is one of the greatest challenges towards a better understanding of human evolution and the identification of functional genetic variants. Several methods have been proposed to detect linkage disequilibrium (LD), which is indicative of natural selection, from genome-wide profiles of common genetic variations but are designed for large regions.</p> <p>Results</p> <p>To find population-specific LD within small regions, we have devised an entropy-based method that utilizes differences in haplotype frequency between populations. The method has the advantages of incorporating multilocus association, conciliation with low allele frequencies, and independence from allele polarity, which are ideal for short haplotype analysis. The comparison of HapMap SNPs data from African and Caucasian populations with a median resolution size of ~23 kb gave us novel candidates as well as known selection targets. Enrichment analysis for the yielded genes showed associations with diverse diseases such as cardiovascular, immunological, neurological, and skeletal and muscular diseases. A possible scenario for a selective force is discussed. In addition, we have developed a web interface (ENIGMA, available at <url>http://gibk21.bse.kyutech.ac.jp/ENIGMA/index.html</url>), which allows researchers to query their regions of interest for population-specific LD.</p> <p>Conclusion</p> <p>The haplotype entropy method is powerful for detecting population-specific LD embedded in short regions and should contribute to further studies aiming to decipher the evolutionary histories of modern humans.</p
- …