
Runs of Homozygosity Do Not Influence Survival to Old
Age
Maris Kuningas1*, Ruth McQuillan2, James F. Wilson2, Albert Hofman1,3, Cornelia M. van Duijn1,3,
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Abstract

Runs of homozygosity (ROH) are extended tracts of adjacent homozygous single nucleotide polymorphisms (SNPs) that are
more common in unrelated individuals than previously thought. It has been proposed that estimating ROH on a genome-
wide level, by making use of the genome-wide single nucleotide polymorphism (SNP) data, will enable to indentify recessive
variants underlying complex traits. Here, we examined ROH larger than 1.5 Mb individually and in combination for
association with survival in 5974 participants of the Rotterdam Study. In addition, we assessed the role of overall
homozygosity, expressed as a percentage of the autosomal genome that is in ROH longer than 1.5 Mb, on survival during a
mean follow-up period of 12 years. None of these measures of homozygosity was associated with survival to old age.
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Introduction

Runs of homozygosity (ROH) are extended tracts of adjacent

homozygous single nucleotide polymorphisms (SNPs) that are

more common in unrelated individuals than previously thought.

Recent evidence has shown that in European populations all

individuals have runs of homozygosity (ROH) shorter than

1.5 Mb, reflecting ancient LD patterns or the chance inheritance

of common haplotypes from both parents, whereas larger ROH

reflect recent parental relatedness or selective advantage [1,2,3].

These large ROHs are likely to be enriched for loci harbouring

functional variants.

To date, a number of studies have analyzed genome-wide SNP

data for ROH and identified individual ROHs that increase the

risk of schizophrenia [1] or Alzheimer’s disease [4], and associate

with height [5] in unrelated individuals. However, for bipolar

disorder [6], colorectal cancer [7] and childhood acute lympho-

blastic leukemia [8] no associations with individual ROH have

been found. Furthermore, no study has reported associations with

overall measures of homozygosity. As for human longevity, it is

likely that recessive alleles that promote longer life exist but have

so far not been identified with genome-wide association studies

(GWAS). Making use of the ROH approach might help to identify

loci harbouring these alleles.

In this study, we examined ROH larger than 1.5 Mb

individually and in combination for association with survival in

5974 participants of the Rotterdam Study. In addition, we assessed

the role of overall homozygosity on survival during a mean follow-

up period of 12 years. None of these measures of homozygosity

was associated with survival to old age.

Results and Discussion

In order to assess the role of ROH in human longevity and to

identify novel longevity loci, we examined overall homozygosity,

and individual ROH regions in the whole genome that are larger

than 1.5 Mb. For this purpose, we made use of the genome-wide

genotype data available in the first and second cohort of the

Rotterdam Study (RS) [9] (Table 1). After quality control 530132

SNPs in 5974 participants were available for subsequent analyses

in the RS1 discovery cohort. Genome-wide ROH were identified

using the Runs of Homozygosity program implemented in PLINK

software [10]. We defined ROH as runs of at least 25 consecutive

homozygous SNPs spanning more than 1.5 Mb with a maximum

gap between two SNPs 100 Kb and a minimum SNP density

coverage of at least 20 SNPs per Kb. As a measure of overall

homozygosity and level of inbreeding, we calculated a percentage

of the autosomal genome that is in ROH longer than 1.5 Mb [2].

Altogether 0.44% (standard deviation (SD) 0.31) of the genome

was in ROH longer than 1.5 Mb in the 5974 participants of RS1.

This percentage is comparable to that reported for other outbred

populations [2]. Of the 5974 participants, 3174 (53%) died during

PLoS ONE | www.plosone.org 1 July 2011 | Volume 6 | Issue 7 | e22580



a mean follow-up period of 12 years (Table 1). When assessing

the association of genome-wide homozygosity with survival, we

observed no statistically significant association (hazard ratio (HR),

95% confidence interval (CI); 0.95, 0.85–1.07). Even though the

estimate is below unity, suggesting that higher genome-wide

homozygosity is beneficial for survival to old age, the effect size is

too small to be of any relevance.

Next, we assessed the association between individual ROH

regions and survival in RS1. For this analysis all overlapping

ROHs within a region were merged, yielding 1040 regions that

had a frequency higher than 1%. Of these regions nine were

associated with survival in RS1 (Table 2). To validate the

existence of these ROH regions and their association with

survival, we made use of the genome-wide SNP data in 1895

participants of RS2 (Table 1). We detected the same ROH

regions also in RS2, but with different frequencies. Further-

more, none of these associated with survival in RS2 (Table 2).

For most estimates the direction was opposite to that observed

in RS1, suggesting that the initial findings arose due to chance.

However, the lack of replication could also stem from the

smaller sample size, shorter follow-up and lower number of

events in the RS2 cohort.

To determine if survival to old age is influenced by the

combination of several ROHs we used the total number of ROH

per individual variable provided in the PLINK output. This

measure takes also infrequent ROHs into account. Altogether

5957 (99.7%) of the participants carried one or more ROH longer

than 1.5 Mb with a maximum of 29 different ROHs per

individual (mean 5.83 ROH, SD 2.62). Despite the inclusion of

infrequent ROH, we observed no association between the number

of ROH per individual and survival (HR, 95% CI; 0.99, 0.98–

1.01).

The lack of associations observed in this study could lie in the

definition of ROH. In this study we used the criteria proposed

by McQuillan R et. al. [2], whereas in other studies different

criteria have been used [4,5,6,7,8]. The most commonly

varying criteria is the length of ROH. In this study we

concentrated on ROH larger than 1.5 Mb, but in other studies

ROH larger than 1.0 Mb [4] or 0.5 Mb [5] have been

analysed. In the latter study, also different minimum number

of SNPs constituting a ROH, and SNP density coverage were

used. To determine whether the results of our study would

change with different ROH definition criteria, we repeated the

analyses using ROH larger than 1.0 Mb and 0.5 Mb, and

setting the number of SNPs constituting a ROH and SNP

density to that used in the study of Yang TL et. al.[5]. However,

also with these definitions of ROH, we did not observe

statistically significant associations between genome-wide ho-

mozygosity and survival (data not shown).

In conclusion, we found no association between survival and

overall homozygosity, and we could not identify ROH regions that

influence survival to old age either individually or cumulatively.

Despite the lack of statistically significant associations, these results

do not exclude the existence of recessive loci that affect survival to

old age. However, it is likely that these loci have small effects and

occur at low frequencies in the general population.

Table 1. Characteristics of the Rotterdam Study (RS).

RS1 RS2

(Discovery cohort) (Replication cohort)

N 5974 1895

Female (n, %) 3547 (59%) 1032 (55%)

Age at baseline in years (mean, SD) 69.4 (9.10) 64.8 (8.03)

Follow-up in years (mean, SD) 12.4 (5.19) 7.62 (1.55)

Mortality (n, %) 3174 (53%) 242 (13%)

doi:10.1371/journal.pone.0022580.t001

Table 2. Association between survival and individual ROH regions.

RS1 RS2

Length SNP Freq Freq

ROH region (KB) (N) (%) HR (95% CI) (%) HR (95% CI)

chr8:68132797–86055273 17923 3313 1.19 1.73 (1.29–2.33) 2.90 0.59 (0.22–1.59)

chr3:49499240–55909341 6410 969 9.73 1.21 (1.08–1.36) 10.6 1.02 (0.66–1.57)

chr3:164109279–170486328 6377 838 1.14 1.49 (1.11–2.00) 2.16 0.77 (0.29–2.06)

chr1:168915903–194976780 26061 3984 7.13 1.17 (1.02–1.35) 10.5 1.12 (0.74–1.70)

chr6:139849739–157503677 17654 3905 1.10 0.66 (0.47–0.94) 3.43 0.92 (0.47–1.80)

chr2:40481216–70916156 30435 6603 1.54 1.34 (1.04–1.72) 4.80 1.00 (0.56–1.78)

chr12:75054501–94547494 19493 3230 4.10 1.20 (1.00–1.43) 7.60 1.14 (0.73–1.79)

chr8:86915545–113724772 26809 4584 1.57 0.73 (0.55–0.98) 13.9 1.18 (0.82–1.69)

chr23:80214069–88330836 8117 610 1.04 1.38 (1.01–1.88) 1.69 1.81 (0.74–4.45)

Cox proportional hazard regression adjusted for sex and age at baseline; *p,0.05; Freq-frequency; HR-hazard ratio; CI-confidence interval.
doi:10.1371/journal.pone.0022580.t002

ROH and Survival
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Materials and Methods

Study population
The Medical Ethics Committee of the Erasmus Medical Center

approved the study and written informed consent was obtained

from all participants. The Rotterdam Study (RS) is an ongoing

population-based cohort study on risk factors for chronic diseases

in the elderly. Detailed information on design, objectives and

methods has been presented elsewhere [9]. For this study data

from the first (RS1) and second (RS2) cohort of the Rotterdam

Study were available. In RS1, all inhabitants aged over 55 years

living in the Ommoord district of Rotterdam were invited to

participate. Of these 7983 (78%) agreed to participate. In 1999,

3011 participants (out of 4472 invitees) who had become 55 years

of age or moved into the study district since the start of the study

and were added to the initial cohort (RS2). All participants of the

Rotterdam Study were followed for mortality until January 1

2009. The current study included 5974 participants of the RS1

and 1895 participants of RS2.

Genotyping
The genome-wide genotyping was performed with Illumina

550K array (Illumina, San Diego, CA, USA) in self-reported

individuals of European descent (sample call rate $97.5%).

Individuals with excess of autosomal heterozygosity, mismatch

between genotypic and phenotypic gender, and outliers identified

by the identity-by-state (IBS) clustering analysis were excluded. In

addition, individuals with more than 5% missing genotypes were

excluded. SNPs with a call rate less than 90%, minor allele

frequency (MAF) lower than 1%, or failing Hardy-Weinberg

equilibrium (HWE) at a threshold of p,0.0001 were discarded,

leaving 530132 SNPs for subsequent analyses.

Identification of runs of homozygosity (ROHs)
Genome-wide ROHs were identified using the Runs of

Homozygosity program implemented in PLINK v1.07 software

[10]. PLINK uses a sliding window of minimum 50 SNPs across

the genome to identify ROHs, allowing for five missing SNPs and

one heterozygous site per window. We identified ROHs, which

were at least 1.5 Mb of consecutive homozygous genotypic calls at

adjacent SNP loci, to exclude very common ROHs that occur in

all individuals in all populations [2]. The minimum number of

continuous homozygous SNPs constituting a ROH was set to 25

and the minimum SNP density coverage was set to at least

20 SNPs per Kb, allowing for centromeric and SNP-poor regions

to be algorithmically excluded from analysis. The maximum gap

between two consecutive homozygous SNPs was set at 100 Kb.

Overall homozygosity was calculated by summing the lengths of

all ROH longer than 1.5 Mb and expressing this as a% of the

typed autosomal genome. The ‘‘homozyg-group’’ option in

PLINK was used to create a file of overlapping ROH regions

for each individual.

Statistical analysis
The association between survival and overall homozygosity and

individual ROHs at particular genomic locations and total

number of ROH per individual was conducted by Cox

proportional hazard regression, adjusted for age at baseline and

sex. All association analyses were performed with SPSS version 17

(SPSS Inc, Chicago, IL, USA) statistical software.
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