124 research outputs found

    Discovery of the Pigtail Molecular Cloud in the Galactic Center

    Full text link
    This paper reports the discovery of a helical molecular cloud in the central molecular zone (CMZ) of our Galaxy. This "pigtail" molecular cloud appears at (l, b, V_LSR) ~ (-0.7deg, +0.0deg, -70 to -30 km/s), with a spatial size of ~ (20 pc)^2 and a mass of (2-6) 10^5 solar masses. This is the third helical gaseous nebula found in the Galactic center region to date. Line intensity ratios indicate that the pigtail molecular cloud has slightly higher temperature and/or density than the other normal clouds in the CMZ. We also found a high-velocity wing emission near the footpoint of this cloud. We propose a formation model of the pigtail molecular cloud. It might be associated with a magnetic tube that is twisted and coiled because of the interaction between clouds in the innermost x_1 orbit and ones in the outermost x_2 orbit.Comment: 15 pages, 6 figures, accepted for publication in Astrophysical Journa

    Dense Molecular Clumps associated with the LMC Supergiant Shells LMC 4 \& LMC 5

    Full text link
    We investigate the effects of Supergiant Shells (SGSs) and their interaction on dense molecular clumps by observing the Large Magellanic Cloud (LMC) star forming regions N48 and N49, which are located between two SGSs, LMC 4 and LMC 5. 12^{12}CO (JJ=3-2, 1-0) and 13^{13}CO (JJ=1-0) observations with the ASTE and Mopra telescopes have been carried out towards these regions. A clumpy distribution of dense molecular clumps is revealed with 7 pc spatial resolution. Large velocity gradient analysis shows that the molecular hydrogen densities (n(H2)n({\rm H}_2)) of the clumps are distributed from low to high density (10310^3-10510^5 cm−3^{-3}) and their kinetic temperatures (TkinT_{\rm kin}) are typically high (greater than 5050 K). These clumps seem to be in the early stages of star formation, as also indicated from the distribution of Hα\alpha, young stellar object candidates, and IR emission. We found that the N48 region is located in the high column density HI envelope at the interface of the two SGSs and the star formation is relatively evolved, whereas the N49 region is associated with LMC 5 alone and the star formation is quiet. The clumps in the N48 region typically show high n(H2)n({\rm H}_2) and TkinT_{\rm kin}, which are as dense and warm as the clumps in LMC massive cluster-forming areas (30 Dor, N159). These results suggest that the large-scale structure of the SGSs, especially the interaction of two SGSs, works efficiently on the formation of dense molecular clumps and stars.Comment: 26 pages, 7 tables, 16 figure

    Dense Clumps in Giant Molecular Clouds in the Large Magellanic Cloud: Density and Temperature Derived from 13^{13}CO(J=3−2J=3-2) Observations

    Full text link
    In order to precisely determine temperature and density of molecular gas in the Large Magellanic Cloud, we made observations of optically thin 13^{13}CO(J=3−2J=3-2) transition by using the ASTE 10m telescope toward 9 peaks where 12^{12}CO(J=3−2J=3-2) clumps were previously detected with the same telescope. The molecular clumps include those in giant molecular cloud (GMC) Types I (with no signs of massive star formation), II (with HII regions only), and III (with HII regions and young star clusters). We detected 13^{13}CO(J=3−2J=3-2) emission toward all the peaks and found that their intensities are 3 -- 12 times lower than those of 12^{12}CO(J=3−2J=3-2). We determined the intensity ratios of 12^{12}CO(J=3−2J=3-2) to 13^{13}CO(J=3−2J=3-2), R3−212/13R^{12/13}_{3-2}, and 13^{13}CO(J=3−2J=3-2) to 13^{13}CO(J=1−0J=1-0), R3−2/1−013R^{13}_{3-2/1-0}, at 45\arcsec resolution. These ratios were used for radiative transfer calculations in order to estimate temperature and density of the clumps. The parameters of these clumps range kinetic temperature TkinT\mathrm{_{kin}} = 15 -- 200 K, and molecular hydrogen gas density n(H2)n(\mathrm{H_2}) = 8×102\times 10^2 -- 7×103\times 10^3 cm−3^{-3}. We confirmed that the higher density clumps show higher kinetic temperature and that the lower density clumps lower kinetic temperature at a better accuracy than in the previous work. The kinetic temperature and density increase generally from a Type I GMC to a Type III GMC. We interpret that this difference reflects an evolutionary trend of star formation in molecular clumps. The R3−2/1−013R^{13}_{3-2/1-0} and kinetic temperature of the clumps are well correlated with Hα\alpha flux, suggesting that the heating of molecular gas n(H2)n(\mathrm{H_2}) = 10310^3 -- 10410^4 cm−3^{-3} can be explained by stellar FUV photons.Comment: 39 pages, 7 figures, 4 tables. Accepted for publication in The Astronomical Journa

    SLPI is a critical mediator that controls PTH-induced bone formation

    Get PDF
    Osteoclastic bone resorption and osteoblastic bone formation/replenishment are closely coupled in bone metabolism. Anabolic parathyroid hormone (PTH), which is commonly used for treating osteoporosis, shifts the balance from osteoclastic to osteoblastic, although it is unclear how these cells are coordinately regulated by PTH. Here, we identify a serine protease inhibitor, secretory leukocyte protease inhibitor (SLPI), as a critical mediator that is involved in the PTH-mediated shift to the osteoblastic phase. Slpi is highly upregulated in osteoblasts by PTH, while genetic ablation of Slpi severely impairs PTH-induced bone formation. Slpi induction in osteoblasts enhances its differentiation, and increases osteoblast–osteoclast contact, thereby suppressing osteoclastic function. Intravital bone imaging reveals that the PTH-mediated association between osteoblasts and osteoclasts is disrupted in the absence of SLPI. Collectively, these results demonstrate that SLPI regulates the communication between osteoblasts and osteoclasts to promote PTH-induced bone anabolism.Morimoto A., Kikuta J., Nishikawa K., et al. SLPI is a critical mediator that controls PTH-induced bone formation. Nature Communications 12, 2136 (2021); https://doi.org/10.1038/s41467-021-22402-x
    • …
    corecore