13 research outputs found

    CK2 Phosphorylates Sec31 and Regulates ER-To-Golgi Trafficking

    Get PDF
    Protein export from the endoplasmic reticulum (ER) is an initial and rate-limiting step of molecular trafficking and secretion. This is mediated by coat protein II (COPII)-coated vesicles, whose formation requires small GTPase Sar1 and 6 Sec proteins including Sec23 and Sec31. Sec31 is a component of the outer layer of COPII coat and has been identified as a phosphoprotein. The initiation and promotion of COPII vesicle formation is regulated by Sar1; however, the mechanism regulating the completion of COPII vesicle formation followed by vesicle release is largely unknown. Hypothesizing that the Sec31 phosphorylation may be such a mechanism, we identified phosphorylation sites in the middle linker region of Sec31. Sec31 phosphorylation appeared to decrease its association with ER membranes and Sec23. Non-phosphorylatable mutant of Sec31 stayed longer at ER exit sites and bound more strongly to Sec23. We also found that CK2 is one of the kinases responsible for Sec31 phosphorylation because CK2 knockdown decreased Sec31 phosphorylation, whereas CK2 overexpression increased Sec31 phosphorylation. Furthermore, CK2 knockdown increased affinity of Sec31 for Sec23 and inhibited ER-to-Golgi trafficking. These results suggest that Sec31 phosphorylation by CK2 controls the duration of COPII vesicle formation, which regulates ER-to-Golgi trafficking

    Effects of TLR Agonists on the Hypoxia-Regulated Transcription Factor HIF-1α and Dendritic Cell Maturation under Normoxic Conditions

    Get PDF
    Dendritic cells (DC) are professional antigen presenting cells that represent an important link between innate and adaptive immunity. Danger signals such as toll-like receptor (TLR) agonists induce maturation of DC leading to a T-cell mediated adaptive immune response. In this study, we show that exogenous as well as endogenous inflammatory stimuli for TLR4 and TLR2 induce the expression of HIF-1α in human monocyte-derived DC under normoxic conditions. On the functional level, inhibition of HIF-1α using chetomin (CTM), YC-1 and digoxin lead to no consistent effect on MoDC maturation, or cytokine secretion despite having the common effect of blocking HIF-1α stabilization or activity through different mechanisms. Stabilization of HIF-1α protein by hypoxia or CoCl2 did not result in maturation of human DC. In addition, we could show that TLR stimulation resulted in an increase of HIF-1α controlled VEGF secretion. These results show that stimulation of human MoDC with exogenous as well as endogenous TLR agonists induces the expression of HIF-1α in a time-dependent manner. Hypoxia alone does not induce maturation of DC, but is able to augment maturation after TLR ligation. Current evidence suggests that different target genes may be affected by HIF-1α under normoxic conditions with physiological roles that differ from those induced by hypoxia

    Noninvasive Prenatal Diagnosis of Fetal Trisomy 18 and Trisomy 13 by Maternal Plasma DNA Sequencing

    Get PDF
    Massively parallel sequencing of DNA molecules in the plasma of pregnant women has been shown to allow accurate and noninvasive prenatal detection of fetal trisomy 21. However, whether the sequencing approach is as accurate for the noninvasive prenatal diagnosis of trisomy 13 and 18 is unclear due to the lack of data from a large sample set. We studied 392 pregnancies, among which 25 involved a trisomy 13 fetus and 37 involved a trisomy 18 fetus, by massively parallel sequencing. By using our previously reported standard z-score approach, we demonstrated that this approach could identify 36.0% and 73.0% of trisomy 13 and 18 at specificities of 92.4% and 97.2%, respectively. We aimed to improve the detection of trisomy 13 and 18 by using a non-repeat-masked reference human genome instead of a repeat-masked one to increase the number of aligned sequence reads for each sample. We then applied a bioinformatics approach to correct GC content bias in the sequencing data. With these measures, we detected all (25 out of 25) trisomy 13 fetuses at a specificity of 98.9% (261 out of 264 non-trisomy 13 cases), and 91.9% (34 out of 37) of the trisomy 18 fetuses at 98.0% specificity (247 out of 252 non-trisomy 18 cases). These data indicate that with appropriate bioinformatics analysis, noninvasive prenatal diagnosis of trisomy 13 and trisomy 18 by maternal plasma DNA sequencing is achievable

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival

    Precision before and after GC correction for the autosomes.

    No full text
    <p>Coefficient of variation (CV) for each chromosome was calculated based on the control euploid cases before GC correction with alignment against the repeat-masked or non-repeat-masked reference genomes and after GC correction with alignment against the non-repeat-masked reference genome. Chromosomes are ordered from left to right in increasing GC contents. GC content of each chromosome is shown in the brackets. 95% confidence interval was shown in error bars.</p
    corecore