5,807 research outputs found

    Economic Efficiency, Distributive Justice and Liability Rules

    Get PDF
    The main purpose of this paper is to show that the conflict between the considerations involving economic efficiency and those of distributive justice, in the context of assigning liability, is not as sharp as is generally believed to be the case. The condition of negligence liability which characterizes efficiency in the context of liability rules has an all-or-none character. Negligence liability requires that if one party is negligent and the other is not then the liability for the entire accident loss must fall on the negligent party. Thus within the framework of standard liability rules efficiency requirements preclude any non-efficiency considerations in cases where one party is negligent and the other is not. In this paper it is shown that a part of accident loss plays no part in providing appropriate incentives to the parties for taking due care and can therefore be apportioned on non-efficiency considerations. For a systematic analysis of efficiency requirements, a notion more general than that of a liability rule, namely, that of a decomposed liability rule is introduced. A complete characterization of efficient decomposed liability rules is provided in the paper. One important implication of the characterization theorems of this paper is that by decomposing accident loss in two parts, the scope for distributive considerations can be significantly broadened without sacrificing economic efficiency.Tort Law, Liability Rules, Decomposed liability Rules, Efficient Rules, Nash Equilibria, Negligence Liability, Distributive Justice

    Yang-Baxter algebra and generation of quantum integrable models

    Full text link
    An operator deformed quantum algebra is discovered exploiting the quantum Yang-Baxter equation with trigonometric R-matrix. This novel Hopf algebra along with its q1q \to 1 limit appear to be the most general Yang-Baxter algebra underlying quantum integrable systems. Three different directions of application of this algebra in integrable systems depending on different sets of values of deforming operators are identified. Fixed values on the whole lattice yield subalgebras linked to standard quantum integrable models, while the associated Lax operators generate and classify them in an unified way. Variable values construct a new series of quantum integrable inhomogeneous models. Fixed but different values at different lattice sites can produce a novel class of integrable hybrid models including integrable matter-radiation models and quantum field models with defects, in particular, a new quantum integrable sine-Gordon model with defect.Comment: 13 pages, revised and bit expanded with additional explanations, accepted for publication in Theor. Math. Phy

    A Novel Approach to Discontinuous Bond Percolation Transition

    Full text link
    We introduce a bond percolation procedure on a DD-dimensional lattice where two neighbouring sites are connected by NN channels, each operated by valves at both ends. Out of a total of NN, randomly chosen nn valves are open at every site. A bond is said to connect two sites if there is at least one channel between them, which has open valves at both ends. We show analytically that in all spatial dimensions, this system undergoes a discontinuous percolation transition in the NN\to \infty limit when γ=lnnlnN\gamma =\frac{\ln n}{\ln N} crosses a threshold. It must be emphasized that, in contrast to the ordinary percolation models, here the transition occurs even in one dimensional systems, albeit discontinuously. We also show that a special kind of discontinuous percolation occurs only in one dimension when NN depends on the system size.Comment: 6 pages, 6 eps figure

    Effect of Nonscattered Modes on Energy Transport in One Dimensional Harmonic Chain

    Get PDF

    Applied analytical combustion/emissions research at the NASA Lewis Research Center

    Get PDF
    Emissions of pollutants from future commercial transports are a significant concern. As a result, the Lewis Research Center (LeRC) is investigating various low emission combustor technologies. As part of this effort, a combustor analysis code development program was pursued to guide the combustor design process, to identify concepts having the greatest promise, and to optimize them at the lowest cost in the minimum time

    Classification of Short-Texts Generated During Disasters: Traditional and Deep learning Approach

    Get PDF
    Micro-blogging sites provide a wealth of resources during disaster events in the form of short texts. Correct classification of those short texts into various actionable classes can be of great help in shaping the means to rescue people in disaster-a�ected places. The process of classification of short texts poses a challenging problem because the texts are usually short and very noisy and Inding good features that can distinguish these texts into di�erent classes is time consuming, tedious and often requires a lot of domain knowledge. In this thesis, we explore various non-deep learning and deep learning methods and propose a deep learning based model to classify tweets into difierent actionable classes such as resource need and availability, activities of various NGO etc. The proposed model requires no domain knowledge and can be used in any disaster scenario with little to no modification. Keywords: Text classification, Topic Modelling, LDA, Word-embeddings, LSTM, Deep Learnin

    Western boundary circulation driven by an alongshore wind: With application to the Somali Current system

    Get PDF
    The linear, continuously stratified, eastern-boundary model of McCreary (1981) is extended to apply to a western ocean boundary and to wind fields with curl. The model has vertical and horizontal mixing, and both types of mixing are important in its dynamics. Solutions are represented as expansions in vertical modes, and the dynamics of low-order and high-order modes are very different. Low-order modes tend to be in Sverdrup balance in the interior ocean, and to form a Munk layer at the coast. High-order modes are in Ekman balance in the interior ocean, and the coastal balance is two dimensional.The model is forced by steady northward winds, both with and without curl. Solutions at the western boundary differ fundamentally from comparable ones at the eastern boundary. For winds without curl, the surface jet is stronger, and there is essentially no coastal undercurrent. This difference is due to the fact that at an eastern boundary the currents associated with low-order modes leak offshore. For winds with curl, a sizeable undercurrent develops, but only south of the region of the wind. A strong onshore current, located near the southern edge of the wind, is generated by offshore wind curl. Part of this current turns southward at the coast, thereby generating the undercurrent in the south.The existence of this undercurrent is in accord with observations off Somalia, where a southward undercurrent has been observed at 5N during the Southwest Monsoon. The wind at this time is oriented alongshore, reaches maximum strength well to the north of 5N, and is associated with a region of large, negative wind curl off the coast

    Humoral and cytokine response elicited during immunisation with recombinant Immune Mapped protein-1 (EtIMP-1) and oocysts of Eimeria tenella

    Get PDF
    Eimeria tenella, the causative agent of caecal coccidiosis, is a pathogenic gut dwelling protozoan which can cause severe morbidity and mortality in farmed chickens. Immune mapped protein-1 (IMP-1) has been identified as an anticoccidial vaccine candidate; in the present study allelic polymorphism was assessed across the IMP-1 coding sequence in E. tenella isolates from four countries and compared with the UK reference Houghton strain. Nucleotide diversity was low, limited to expansion/contraction of a CAG triplet repeat and five substitutions, three of which were non-synonymous. The EtIMP-1 coding sequence from a cloned Indian E. tenella isolate was expressed in E. coli and purified as a His-tagged thioredoxin fusion protein. An in-vivo vaccination and challenge trial was conducted to test the vaccine potential of recombinant EtIMP-1 (rEtIMP-1) and to compare post-vaccination immune responses of chickens to those stimulated by live oocyst infection. Following challenge, parasite replication measured using quantitative PCR was significantly reduced in chickens that had been vaccinated with rEtIMP-1 (rIC group; 67% reduction compared to UC or unimmunised controls; 79% reduction compared to rTC group or recombinant thioredoxin mock-immunised controls, p < 0.05), or the birds vaccinated by infection with oocysts (OC group, 90% compared to unimmunised controls). Chickens vaccinated with oocysts (OC) had significantly higher levels of interferon gamma in their serum post-challenge, compared to rEtIMP-1 vaccinated birds (rIC). Conversely rEtIMP-1 (rIC) vaccinated birds had significantly higher antigen specific serum IgY responses, correlating with higher serum IL-4 (both p < 0.05)

    A numerical investigation of the Somali Current during the Southwest Monsoon

    Get PDF
    The dynamics of the Somali Current system during the Southwest Monsoon are investigated using a 2½-layer numerical model that includes entrainment of cool water into the upper layer. Entrainment cools the upper layer, provides interfacial drag, and prevents the interface from surfacing in regions of strong coastal upwelling. Solutions are forced by a variety of wind stress fields in ocean basins with western boundaries oriented either meridionally or at a 45° angle. Solutions forced by southern hemisphere easterlies develop a strong coastal current south of the equator. When the western boundary is slanted, this current bends offshore at the equator and meanders back into the ocean interior. No cold wedge forms on the Somali Coast. These solutions suggest that the southern hemisphere trades are not an important forcing mechanism of the Somali Current circulation. Solutions forced by northward alongshore winds differ considerably depending on the orientation of the western boundary and the horizontal structure of the wind. When the boundary is meridional and the wind is uniform (a curl-free wind field), solutions continuously shed eddies which propagate northward along the coast and weaken. When the boundary is meridional and the wind weakens offshore, they reach a completely steady, eddy-free state with no coastal upwelling. If the boundary is slanted and the wind does not vary alongshore, solutions reach a steady state that now contains stationary gyres and cold wedges. If the boundary is slanted and the forcing is a strong wind patch confined north of the equator, the flow field slowly vacillates between single-gyre and double-gyre states. Solutions are also forced by an idealized representation of the observed alongshore wind field, consisting of two components: a moderate background field (∼1 dyn/cm2) turned on in May, and a Findlater jet (∼4 dyn/cm2) turned on gradually in June. A single gyre, the Southern Gyre, initially develops south of 4N due to the background wind, and a second gyre, the Great Whirl, develops later between 4N–9N in response to the Findlater jet. Cold wedges form on the northern flanks of both gyres. In some of the solutions, the Southern Gyre moves northward and coalesces with the Great Whirl in early September, before the monsoon begins to weaken. Thus the collapse of the two-gyre system is part of the adjustment of the model to the peak phase of the Southwest Monsoon, and is not due to a relaxation of the wind
    corecore