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Abstract 

Eimeria tenella, the causative agent of caecal coccidiosis, is a pathogenic gut dwelling protozoan 

which can cause severe morbidity and mortality in farmed chickens. Immune mapped protein-1 

(IMP-1) has been identified as an anticoccidial vaccine candidate; in the present study allelic 

polymorphism was assessed across the IMP-1 coding sequence in E. tenella isolates from four 

countries and compared with the UK reference Houghton strain. Nucleotide diversity was low, 

limited to expansion/contraction of a CAG triplet repeat and five substitutions, three of which were 

non-synonymous. The EtIMP-1 coding sequence from a cloned Indian E. tenella isolate was 

expressed in E. coli and purified as a His-tagged thioredoxin fusion protein. An in-vivo vaccination 

and challenge trial was conducted to test the vaccine potential of recombinant EtIMP-1 (rEtIMP-

1) and to compare post-vaccination immune responses of chickens to those stimulated by live 

oocyst infection. Following challenge, parasite replication measured using quantitative PCR was 

significantly reduced in chickens that had been vaccinated with rEtIMP-1 (rIC group; 67% 

reduction compared to UC or unimmunised controls; 79% reduction compared to rTC group or 

recombinant thioredoxin mock-immunised controls, p<0.05), or the birds vaccinated by infection 

with oocysts (OC group, 90% compared to unimmunised controls). Chickens vaccinated with 

oocysts (OC) had significantly higher levels of interferon gamma in their serum post-challenge, 

compared to rEtIMP-1 vaccinated birds (rIC). Conversely rEtIMP-1 (rIC) vaccinated birds had 

significantly higher antigen specific serum IgY responses, correlating with higher serum IL-4 (both 

p<0.05).  
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Introduction 

Coccidiosis of domestic chickens (Gallus gallus domesticus) is a disease caused by protozoan 

parasites of the genus Eimeria. Seven species are recognized to infect chickens: Eimeria 

acervulina, E. brunetti, E. maxima, E. mitis, E. necatrix, E. praecox and E. tenella, (Long, 1973; 

Shirley, 1979; Shirley et al., 1983), all of which have a worldwide distribution (Clark et al., 2016). 

Eimeria tenella is an important species due to its common occurrence and high pathogenicity (Reid 

et al., 2014; Kumar et al., 2015). Peak morbidity due to E. tenella is commonly observed in 

chickens between three and seven weeks of age (Urquhart et al., 1996) and broilers reared for meat 

production in deep litter systems are commonly affected towards the end of their growing period, 

when mortality can be high (Jatau et al., 2012). The outcome of infection is influenced by the 

magnitude of oocyst dose, bird age and genotype, previous exposure and nutritional status. 

Coccidiosis control currently relies on good flock management and hygiene, chemoprophylaxis 

and vaccination. Chemoprophylaxis is most commonly employed, but parasite genetic resistance 

to anticoccidial drugs is widespread and concerns related to drug and chemical residues in meat 

and eggs are of increasing importance (Young and Craig, 2001). Current coccidiosis vaccines are 

mostly based on oral infection with controlled doses of wild-type or attenuated parasites, and most 

vaccines include oocysts of several parasite species to provide broad protection against disease. In 

some formulations multiple strains of a single species (for example E. maxima) are included to 

combat challenge by antigenically divergent strains (Shirley and Bellatti, 1988).  

The commercial use of live anticoccidial vaccines has been limited by production capacity 

(virtually all vaccine lines have to be grown and purified from chickens) and the relative cost of 

the products compared to anticoccidial drugs (Shirley et al., 2007).  The constraints on current 

vaccines encourage development of next generation versions based on the use of adjuvanted 



 

recombinant proteins or immunoprotective antigens expressed in appropriate live vector systems 

(reviewed in Blake and Tomley, 2014). Many antigens including apical membrane antigen-1, 

several micronemes (MIC) and heat shock proteins (HSP-90 and HSP-70), have been tested 

experimentally with varying degrees of success (e.g. Peroval et al., 2006; Subramanian et al., 

2008; Sathish et al., 2011; Jiang et al., 2012; Sathish et al., 2012; Zhang et al., 2012; and Qi et al., 

2013).    

Immune mapped protein-1 (IMP-1) was first identified as a novel vaccine antigen for E. maxima 

in a genetic mapping study (Blake et al., 2011), and shown to provide partial immune protection 

against challenge infection when administered as a recombinant protein. Understanding the nature 

of the immune response stimulated by vaccination, compared with natural infection, offers scope 

to improve adjuvant choice and maximize immune protection. IMP-1 orthologues have been 

identified in other coccidians. Antibodies against NcIMP-1 reduce Neospora caninum infection of 

Vero cells in-vitro (Cui et al., 2012a); vaccination with recombinant TgIMP-1 prolongs survival 

of mice experimentally infected with Toxoplasma gondii (Cui et al., 2012b); and recombinant 

EtIMP-1 (rEtIMP-1) partially protects chickens against E. tenella infection (Yin et al., 2013; Yin 

et al., 2015).  If IMP-1 is to be developed further as an anticoccidial vaccine antigen it is important 

to understand the extent of its naturally occurring polymorphism; allelic diversity has undermined 

the utility of several anti-parasite vaccine candidates, most notably for malarial parasites such as 

Plasmodium falciparum (Healer et al., 2004). Here, we report comparison of EtIMP-1 sequences 

generated from parasites collected from three continents and test the immunizing capacity of 

rEtIMP-1 from an Indian variant parasite, comparing the immune responses induced with those 

stimulated by oral oocyst vaccination.  

 



 

2. Materials and methods 

2.1. Experimental birds and parasite isolates 

CARIBRO Vishal broiler chickens were obtained from the Central Avian Research Institute, 

Izatnagar, Bareilly, India, for passage and amplification of E. tenella parasites, collection of sera 

and experimental vaccination studies. The birds were reared under strict specific pathogen-free 

conditions in steel cages on raised stands with wired flooring, with a standard feeding and watering 

regimen without anticoccidial drugs. Faecal trays were placed under each cage floor and cleaned 

daily. Eimeria tenella oocysts used in the study were derived from Indian isolate-1 (Kundu et al., 

2013). The ethical review process is described in the Ethical Statement. 

 

2.2. Collection of chicken anti-E. tenella convalescent sera 

Six chickens were gavage inoculated with 2,500 sporulated oocysts at 19 days of age and two 

weeks later with 5,000 oocysts. A week after the second oocyst infection, blood was collected 

from the brachial vein and allowed to clot at room temperature for 2 hours. Serum was harvested 

by centrifugation at 1,000g for 10 mins. Harvested serum was used for characterization of rEtIMP-

1 by Western Blot.  

 

2.3. RNA isolation and cDNA preparation 

Total RNA was extracted from E. tenella oocysts using an RNeasy mini kit (Qiagen). Sporulated 

oocysts numbering 1.5x105 were suspended in 50 µl lysis buffer provided with the kit and an equal 

volume of 0.3-0.5 mm DEPC treated, pre-sterilised glass beads were added. Oocysts were ruptured 

as described previously for extraction of RNA (Krucken et al., 2008). RNA extracted as per the 

manufacturer’s instruction was eluted in a 50 µl volume. The concentration and purity was checked 



 

using a Nanodrop spectrophotometer (ND-1000, Thermo Scientific). Complementary DNA 

(cDNA) was synthesized from E. tenella RNA, using a RevertAid H minus first strand cDNA 

synthesis kit (Thermo Scientific), in a 20 µl reaction mixture as described by the manufacturer.  

 

2.4. Polymerase chain reaction (PCR) based amplification, cloning and sequencing of E. 

tenella immune mapped protein-1 (EtIMP-1) 

Primers, forward (5’-AATGAATTCTGAGCCTCCTGTCTCTGCTG-3’) and reverse (5’-

TTACTCGAGAGTTGCTGCCGCCACATTTC-3’) were used for PCR amplification of an 

EtIMP-1 1134 bp fragment, incorporating EcoRI and XhoI restriction sites respectively (shown in 

italics). PCR amplification was performed in a 25 µl reaction mixture consisting of cDNA 2 µl, 

Dream Taq green buffer 2.5 µl, 1 µl each of forward and reverse primers (10 pmol µl-1), 10 mM 

dNTP mix 0.5 µl, Pfu polymerase/ Taq polymerase blend 1 µl and nuclease free water to make up 

the volume. The PCR reaction was carried out under initial denaturation at 95oC for 3 min, 35 

cycles of denaturation at 95oC for 30 sec, annealing at 57oC for 30 sec and extension at 72oC for 1 

min, and final extension at 72oC for 15 min. The PCR product was purified using a Minelute PCR 

purification kit (Qiagen, Germany), ligated into TA vector pTZ57R/T and transformed into DH5α 

Escherichia coli cells using an InsTA cloning kit (ThermoScientific, USA). The EcoRI/XhoI 

double digested EtIMP-1/pTZ plasmid and pET32b vector were gel purified and ligated. The 

ligation reaction was performed with 5X ligation buffer (4 µl), digested vector (50ng/ 4µl), 

digested PCR product (30 ng/8 µl), T4 DNA ligase (5 Weiss units /1 µl) and nuclease free water 

(3 µl), in 0.2 ml PCR tubes at 4oC with overnight incubation. The ligated product was cloned into 

E. coli (Nova Blue strain) using a Transform Aid bacterial transformation kit (Thermo Scientific, 



 

USA). The clones were sent for custom sequencing of the insert at the Department of 

Biochemistry, University of Delhi, India. 

 

2.5. Bioinformatic analysis 

Nucleotide sequences obtained after custom sequencing were searched for similarity using the 

BLASTn program (nucleotide blast) through the National Center for Biotechnology Information 

(NCBI; http://blast.ncbi.nlm.nih.gov/Blast.cgi) and aligned using the Megalign program in DNA 

Star (Laser gene Suite 6.0) software. The protein encoding nucleotide sequences were translated 

in-silico using the Edit Sequence program of DNA Star (Laser gene Suite 6.0) and BLASTp 

(protein-protein BLAST) was performed. The sequences generated here were compared to the 

reference E. tenella Houghton strain IMP-1 (accession number FN813229), as well as a published 

sequence derived from a Chinese E. tenella isolate (KC215109). Additional EtIMP-1 sequences 

were extracted from next-generation sequence data generated previously from E. tenella isolates 

collected in the UK and the US (the Weybridge and Wisconsin reference isolates; Reid et al., 2014; 

Blake et al., 2015). The EtIMP-1 sequence generated here has been deposited in GenBank under 

the accession number KC758959. The number of nucleotide haplotypes and total nucleotide 

polymorphism (Pi) using the Jukes-Cantor correction were calculated with DnaSP (version 

5.10.01, Librado and Rozas, 2009). Tajima’s D, and Fu and Li’s D* and F* tests were conducted 

to test for signatures of selection using DnaSP. 

 

2.6. Expression and purification of recombinant E. tenella IMP-1 (rEtIMP-1) 

Recombinant IMP-1 was expressed in BL21pLysS E. coli cells as a His-tagged thioredoxin fusion 

protein which was purified under native conditions. Maximum expression of rEtIMP-1 was 

http://blast.ncbi.nlm.nih.gov/Blast.cgi


 

achieved by induction of bacterial culture at optical density (OD) of 0.6 with 0.6 mM final 

concentration Isopropyl β-D-1-thiogalactopyranoside (IPTG). Each gram of harvested cell pellet 

was lysed by incubating in buffer (75mM phosphate, 500mM NaCl, 20mM imidazole, pH 8.0) 

containing 1% w/v tritonX-100, followed by sonication on ice. Supernatant from the lysate after 

centrifugation was passed through 1ml volume of pre-equilibrated Ni-NTA super flow resin 

(Qiagen, USA).The column was washed with wash buffer (75 mM phosphate, 500mM NaCl, 

40mM imidazole, pH 8.0) to remove unbound proteins. Resin bound rEtIMP-1 was eluted in 0.5 

ml fractions with elution buffer (75 mM phosphate, 500mM NaCl, 500mM imidazole, pH 8.0). 

The concentration of eluted protein was estimated using the Bradford assay method (Bradford 

assay kit, Amresco, USA). 

 

2.7. SDS PAGE and Western blotting 

Expressed recombinant protein was resolved on 12 % SDS-PAGE mini gels (Bio-Rad mini protean 

vertical electrophoresis system, as described by Laemmli, 1970). The rEtIMP-1 expressed from 

1134 bp nucleotides predicted 378 amino acid residues. Purified proteins resolved on 12% SDS-

PAGE gel were transferred on to nitrocellulose membrane, pore size 0.45µm (Thermo Scientific, 

USA) using a Bio-Rad mini trans-blot system, with a constant power supply of 100V for 1 hour. 

Expression of the recombinant protein was confirmed by probing the blotted proteins with a 

1:1,000 dilution of Ni-NTA HRP conjugate (Qiagen), as per the protocol provided by the 

manufacturer. The specificity of rEtIMP-1 was confirmed by immunoblot using anti-E. tenella 

convalescent serum. 

 

2.8. Expression and purification of recombinant thioredoxin (TRX) 



 

His-tagged thioredoxin was expressed and purified alone to be used for mock immunisation. The 

plasmid pET32b+ was used to transform E. coli BL21pLysS (DE3) cells in a manner analagous to 

that carried out for expression of rEtIMP-1. Protein concentration was estimated by the Bradford 

method. 

 

2.9. Immunisation trial 

Forty eight chickens were reared under specific pathogen free conditions from day of hatch (day 

0) to 7 days of age in steel cages on raised stands with wired flooring. Pre-immunisation serum 

was collected from each bird from the brachial vein at 7 days of age. Thereafter, chickens were 

separated into four groups of ten birds and one group of eight birds, including groups immunised 

using recombinant EtIMP-1 (rIC), recombinant thioredoxin (rTC, vector control), live oocyst 

exposure (OC), birds left unimmunised and challenged (UC) and birds unimmunised and 

unchallenged (UU). Primary immunisation was administered on day 7, using 50 µg of protein (rIC 

or rTC), adjuvanted with TiterMax Gold (Sigma, USA) by the intramuscular (IM) route using 

thigh muscle or oral gavage with 1,000 sporulated oocysts of E. tenella Indian isolate-1 (OC; Table 

1). Booster immunisation was administered on day 21, using 50 µg of protein (rIC or rTC), 

adjuvanted with Freund’s Incomplete Adjuvant by the IM route in thigh muscle or oral gavage 

with 2,000 sporulated oocysts of E. tenella Indian isolate-1 (OC; Table 1). Groups, rIC, rTC, OC 

and UC were challenged by oral inoculation of 5,000 sporulated E. tenella Indian isolate-1 oocysts 

on day 32. Group details, adjuvants, immunisation and challenge schedule for each group is 

depicted in Table 1.  

 

2.10. Circulating IgY quantification using ELISA (Enzyme Linked Immunosorbent Assay) 



 

ELISA was used to measure antibody (IgY) response against rEtIMP-1 post immunisation and 

post challenge in sera harvested from whole blood obtained by brachial vein puncture. Serum 

samples were harvested on the following days: 7 day old chickens (pre-immunisation); 14 day old 

chickens (7 days post-primary immunisation, PI); 21 day old chickens (14 days PI); 28 day old 

chickens (7 days post-booster immunisation, PB) and 37 day old chickens (5 days post-challenge, 

PC).  Circulating IgY were estimated by ELISA after laboratory standardisation of antigen and 

serum concentration by chequor board titration. Antigen concentration of 2.5 ng µl-1 and serum 

dilution of 1:100 was used for ELISA.  

 

2.11. Quantitative PCR (qPCR) based estimation of E. tenella load 

Birds (eight each from rIC, rTC, OC and UC groups) were sacrificed 5.5 days post challenge 

(experimental day 37.5) by cervical dislocation after chloroform anesthesia. The right caecum 

from each bird was removed, gently rinsed with sterile PBS, pH 7.4 to remove the caecal contents, 

placed in sterile 50 ml centrifuge tubes containing 10 ml RNA later (Qiagen), processed as 

recommended by the manufacturer and stored at -80oC until further processing for DNA 

extraction.  Post thawing, caeca were homogenized using a tissue homogenizer (Ika, Ultra Purrax, 

Germany) and DNA was extracted using a QIAamp DNA mini kit (Qiagen), as per the protocol 

provided by the manufacturer. Primers TENF (5’-AGCAGCAGCTGCCTCTCATTGACC-3’) 

and TENR (5’-CAGAGAGTCGCCGTCACAGT-3’) were used for the quantification of total E. 

tenella genomes, with TBPF (5’-TAGCCCGATGATGCCGTAT-3’) and TBPR (5’-

GTTCCCTGTGTCGCTTGC-3’) targeting a fragment of the host (chicken) TATA binding protein 

coding sequence used as a reference target for standardisation of parasite genome numbers against 

host genome numbers (Nolan et al., 2015). Quantitative PCR was performed in 20 µl reactions on 



 

a Stratagene MX3050P real time thermal cycler. Each reaction mixture was prepared using Sso 

Fast Eva Green supermix (10µl), forward and reverse primers (500nmol/ 1µl each), template DNA 

(1µl) and nuclease free water. The amplification conditions were standardized as initial 

denaturation 95OC for 2 min, followed by 40 cycles of denaturation at 95OC for 5 sec, annealing 

and extension at 60OC for 10 sec. Quantification of E. tenella genome numbers in caecal samples 

were carried as per the procedure of Nolan et al. (2015).  

 

2.12. Determination of serum cytokine levels (IL-4, IL-10 and IFN-γ) by ELISA 

The quantity of circulating interleukin-4 (IL-4), interleukin 10 (IL-10) and interferon gamma (IFN-

γ) was estimated in pre-immunisation, post-immunisation and post-challenge sera. Interleukin 

assay kits based on sandwich ELISA (for IFN-γ) or competitive ELISA (for IL-4 and IL10) 

supplied by Blue Gene, Shanghai (China) were used as described by the manufacturer.  

 

2.13. Statistical analysis 

IBM SPSS Statistics 20.0 (IBM Corp., 2011) was used for statistical analysis of experimental data 

generated during the study. Analysis of variance (ANOVA) supplemented by Duncan’s post hoc 

test was used to analyse anti-EtIMP-1 IgY levels (OD450 values of ELISA), and normalised 

genome copy numbers of parasites. Post interleukin ELISA assay four parameter logistic curve 

(4PL) standard curves were prepared using the OD450 values of the standards versus their 

respective concentrations. The OD450 values of each sample were interpolated in the 4PL curve to 

obtain absolute values of interleukins in pg ml-1. These values were used in statistical analysis with 

ANOVA (Duncan’s post hoc) test. 

 



 

3. Results 

3.1. Amplification, sequencing and bioinformatics analysis of EtIMP-1 

PCR amplification and sequencing of the partial EtIMP-1 coding sequence from the Indian E. 

tenella isolate 1 resulted in a 1,146 bp product (GenBank accession number KC758959). Sequence 

similarity calculated by BLASTn against the NCBI non-redundant database revealed greatest 

similarity with EtIMP-1 from a Chinese isolate (KC215109) and EtIMP-1, from the Houghton 

strain, UK (FN813229), with 99.9% and 97.4% similarity. Alignment of the sequences identified 

30 additional nucleotides in the Asian (Chinese and Indian) isolates as compared to European and 

North American samples (Houghton, Weybridge and Wisconsin strains), with an 

expansion/contraction of a partially degenerate CAG repeat (Figure 1). The extra nucleotides add 

10 amino acids to the Indian and Chinese isolate IMP-1 sequences in the peptide chain 

(QQQEQQQQEQ). Additionally, five single nucleotide polymorphisms (SNPs) were detected, 

three of which incurred non-synonymous substitutions (Figure 1, Table 2). Sequence comparison 

revealed low nucleotide diversity (Pi[JC] = 0.00305), although four alleles were detected with only 

those from China and India found to be identical (Table 2). Calculation of Tajima’s D, and Fu & 

Li’s D* and F* statistics failed to detect any statistically significant signatures of selection, 

although the sample size may have been limiting. 

 

3.2. Recombinant EtIMP-1 production 

Recombinant EtIMP-1, fused to thioredoxin, was expressed under native conditions and resolved 

on SDS PAGE (Supplementary Figure 1). The protein had a predicted length of 382 amino acid 

residues and predicted molecular weight of 40.53 kDa using EXPASY (Gasteiger et al., 2003). 

Molecular weight of the expressed and purified protein as estimated using Syngene software, after 



 

capturing the image of the gel in a Syngene gel documentation unit, was approximately 60.5 kDa. 

This increase was due to co-expression with a thioredoxin and two hexa-+histidine tags from the 

vector. BL21pLysS cells were used rather than BL21 cells, because the latter produced leaky 

expression. Recombinant cells expressing rEtIMP-1 were lysed within 30 min of incubation at 

room temperature with lysis buffer. The recombinant protein was detected within the supernatant 

(soluble fraction) when resolved on SDS-PAGE, indicating that the protein rEtIMP-1 was soluble 

when expressed in the pET32 system. The polyhistidine tag on the recombinant protein was 

identified by Ni-NTA HRP conjugate (Figure 2). The recombinant protein reacted with 

convalescent sera (Figure 2).  

 

3.3 Effect of rEtIMP-1 immunisation on caecal parasite burden 

The impact of rEtIMP-1 or live parasite immunisation on subsequent E. tenella replication was 

assessed using qPCR to determine the number of parasite genomes 132 hours post-challenge, 

normalized by comparison to the number of host genomes (Figure 3). Significant reductions 

(p<0.05) in parasite burden of 78% and 67% was observed in the group rIC (rEtIMP-1) (14.14±5.2) 

when compared to the TC and UC control groups (68.47±16.1 and 42.92±11.4), respectively. Live 

oocyst immunisation (the OC group) resulted in ~ 90% reduction in parasite burden (4.09±2.7) 

compared to the UC group (42.92±11.4).  

 

3.4. Antibody (IgY) response and interleukin response against EtIMP-1 after oocyst or 

rEtIMP-1 immunisation 

Immunoglobulin (IgY) response to oral oocyst or recombinant protein immunisation is presented 

in Figure 4. The highest anti-EtIMP-1 IgY responses were observed in the rIC (rEtIMP-1) 



 

immunised group (p˂0.05).  Post immunisation (PI) and post challenge sera of the mock-

immunised rTC group also had increased antibody levels, reflecting inclusion of thioredoxin in the 

rEtIMP-1 antigen used in the ELISA assay, however these were significantly lower than the rIC 

group. Significant antibody responses were also observed against EtIMP-1 in the OC group after 

primary and booster immunisations compared to the UC group, although levels always remained 

lower than the rIC and rTC groups.  

Comparison of interleukin responses between groups and week-wise (within groups) was assessed 

by generating four parameter logistic (4PL) curves for all three interleukin standards tested from 

XLSTAT analyses of OD450 values of standards against their concentration. The formulae for 

deducing the sample OD values of each interleukin were derived from their respective 4PL curves 

and tabulated (Supplementary table). 

The IL-4 response to immunisation and challenge is presented in Figure 5A. IL-4 was detected in 

all groups tested prior to immunisation (7 day old chickens) with no significant differences 

between the groups. By day 7 PI (14 day old chickens) IL-4 levels were significantly elevated in 

all groups compared to day 0 PI with the OC group having the highest value (p<0.05), no 

significant difference between rTC and UC groups, and rIC being significantly lower (p<0.05). At 

day 14 PI (21 day old chicken), IL-4 levels in OC were similar to UC and rTC groups and 

significantly lower to the rIC group (p<0.05). Post booster (at 28 days of age), IL-4 levels were 

significantly higher in rIC, OC and rTC groups compared to the previous week; however they 

remained significantly highest in the rIC group. Five days post challenge at 35 day age, no 

increment in IL-4 was observed in any of the groups, but higher levels of IL-4 persisted in the rIC 

group, albeit at a lower level than at pre-challenge. No change in circulating IL-4 was observed in 



 

UC chickens (unimmunised and challenged) compared to UU chicken (unimmunised and 

unchallenged) on 35th day of the study (5 days post-challenge). 

The IL-10 responses to immunisation and challenge are presented in Figure 5B.  The most 

significant IL-10 responses were observed in birds of the rIC and rTC groups at days 7 and 14 PI 

(14 and 21 days age). Post booster and post challenge IL-10 levels in rTC and rIC groups persisted 

but at significantly lower levels compared to earlier times. In OC birds IL-10 levels were 

significantly high after 14 days PI (21 days age) and then decreased after booster and challenge. 

Serum IL-10 levels in UC were significantly higher than UU birds at 05 days post challenge. 

IFNγ responses to immunisation and challenge are presented in Figure 5C.  IFNγ levels increased 

in all groups by day 14, with significant increases for the oocyst (OC) and rEtIMP-1 (rIC) 

immunised groups compared to the unimmunised. After the booster immunisation, serum IFNγ 

increased further in the rIC and OC groups, most notably in the OC which became significantly 

higher than rIC and a small increase in the rTC. Post challenge, IFNγ was significantly increased 

in UC chicken compared to UU birds, but reduced in rIC birds.  

 

4. Discussion 

Immune mapped protein-1 (IMP-1) was first described as an anticoccidial vaccine candidate in E. 

maxima (Blake et al., 2011). Subsequently, immunisation trials with recombinant IMP-1 have also 

been reported for E. tenella (Yin et al., 2014, 2015). If IMP-1 is to be developed as an anticoccidial 

vaccine candidate it is important to understand features of its biology including the occurrence and 

extent of naturally occurring allelic diversity, and the nature of the immune responses stimulated 

by its use in vaccination. 



 

Here, we have assessed IMP-1 allelic diversity by comparison of coding sequences derived from 

E. tenella isolates originating from China, India, the USA and the UK. Analysis revealed very low 

nucleotide diversity, restricted to the expansion/contraction of a degenerate ‘CAG’ repeat motif 

and five SNPs. Similarly low levels of polymorphism have been described for other anticoccidial 

vaccine candidates such as apical membrane antigen 1 (AMA1; Blake et al., 2015), enhancing the 

prospect of using such antigens in a future recombinant vaccine. 

The effect of vaccination using recombinant rEtIMP-1 protein was compared with 

immunoprotection induced by oral infection with sporulated oocysts. Following challenge 

infection, chickens vaccinated with rEtIMP-1 were found to have a 67% reduction in caecal 

parasite genome numbers determined using qPCR compared to unimmunised chickens, and a 79% 

reduction compared to birds mock immunised with recombinant thioredoxin. Previously, Yin et 

al. (2013 and 2014) have reported a 60-66% reduction in oocyst output following immunisation 

with whole rEtIMP-1 or a C-terminal derivative of EtIMP-1. This EtIMP-1 was derived from a 

Chinese E. tenella isolate and the recombinant protein was adjuvanted with Freund’s complete 

adjuvant. Adjuvants related to Freund’s complete have commonly been associated with a bias 

towards Th1-type responses (Shibaki and Katz, 2001; Stills, 2005). Here, TiterMax Gold was used 

as the adjuvant for the first immunisation in the present study given reports of a more balanced 

Th1/Th2 response (Stephenson et al., 2014), followed by Freund’s incomplete adjuvant for 

subsequent immunisations. Freund’s incomplete adjuvant has been associated with stronger Th2-

type responses (Shibaki and Katz, 2001; Stills, 2005). In the present study, rEtIMP-1 was derived 

from an Indian isolate of E. tenella. The EtIMP-1 sequences of the Chinese and Indian isolates 

were identical (Figure 1 and Table 2). Immune protection, though partial in the present studies, 

was estimated based on the reduction in number of E. tenella genomes in the caecum, following 



 

the protocol established by Nolan et al. (2015). The reduction in parasite replication was similar 

to that observed by Yin et al (2013 and 2014), where effects of immunisation were estimated based 

on reduction in faecal oocyst output.  

Eimeria infections induce specific antibody responses that are detected in peripheral blood 

circulation (IgM and IgY), intestinal mucosal secretions (IgM and IgA) and biliary secretions 

(IgA) (reviewed by Yun et al., 2000b). There is a dichotomy in opinion regarding the importance 

of antibodies or humoral immune responses in protection again Eimeria infection. Most studies 

and reports identify a minor or negligible role for antibodies in protection against natural 

coccidiosis in poultry (Lillehoj, 1987; Rose, 1987). However, Belli et al. (2009), Wallach (2010) 

and Constantinoui et al. (2011), have reported a protective role for immunoglobulins against 

Eimeria infections.  Nguyen et al. (2004) described protection against challenge infection of E. 

tenella and E. acervulina after feeding a dietary supplement of IgY powder prepared from 

hyperimmune sera of chickens raised against antigen 3-1E (profilin). In this study, we found that 

immunisation with rEtIMP-1 produced a significantly strong IgY response post-immunisation and 

post-booster, likely enhanced by the use of Freund’s incomplete adjuvant for the booster.  Low 

immunizing doses of 1,000 and 2,000 E. tenella oocysts also induced a detectable primary IgY 

response and an increased anamnestic IgY response, post booster. Smith et al. (1993) reported a 

similar IgY profile, with a small increase after primary infection, followed by a rapid increase after 

challenge.  

In the recent past many researchers have undertaken immunisation with a variety of recombinant 

proteins and observed the effects on interleukin responses in spleen or caecal IELs by RT-qPCR 

or ELISA.  Interleukins are cytokines or signaling molecules secreted by various cell types of the 

immune system. These molecules play an important role in chemotaxis, clonal proliferation, as 



 

mediators in inflammation, angiogenesis and many other cellular mechanisms. IELs have been 

found to express high levels of Th1 related cytokines like IFNγ, along with the Th2 cytokine IL-4 

and IL-10 during coccidiosis (Cornelissen et al., 2009). Serum IL-4 in chickens immunised with 

rEtIMP-1 (rIC) was higher post booster than after primary immunisation. Post challenge a decrease 

in serum IL-4 was observed. Vaccination with various recombinant proteins has shown higher 

levels of IL-4 transcripts in other studies (Hoan et al. 2014). Oocyst immunisation showed a 

significant rise in IL-4 after primary dose but post-booster responses were lower in comparison to 

the rEtIMP-1 vaccination. Hong et al. (2006) observed a slight increase in IL-4 transcription after 

primary challenge and a subsequent decrease after secondary challenge when using a higher oocyst 

dose of 20,000. Post booster serum IL-4 levels in rIC birds were significantly higher than the OC 

group, possibly influenced by the switch to Freund’s incomplete adjuvant (Stephenson et al., 

2014). High levels of circulating IL-4 after booster and challenge in rIC birds may have influenced 

the high serum antibody levels which increased even after challenge. On the contrary, IL-4 

expression was reduced after re-infection (booster) and challenge in OC birds and may have 

contributed to the fall in antibody levels post challenge. Changing the adjuvant used during 

boosting could enhance the Th1 response further, and might consequentially increase the 

magnitude of the anti-Eimeria response (Chapman et al., 2013). 

IL-10 is the master regulator of Th1 and Th2 responses and mediates its effect directly on T cells, 

B cells, antigen presenting cells and NK cells (Ding et al., 2003; Mocellin et al., 2003; Couper et 

al., 2008). It is a potent inhibitor of pro-inflammatory cytokines and T helper 1 responses such as 

IFNγ, IL-1β, TNFα, IL-12 and nitric oxide production, as well as suppressing expression of MHC 

class II molecules (Fiorentino et al., 1991; Gazzinelli et al., 1992; Aste-Amezaga et al., 1998; 

Rothwell et al., 2004; Wu et al., 2016). In the present study it was found that serum IL-10 levels 



 

increased after immunisation with rEtIMP-1 and oocysts. However, the levels in the recombinant 

protein immunised group was higher than the oocyst immunised chickens. Wu et al. (2016), 

reported that serum IL-10 increases by fifth day post E. tenella infection. Estimation of serum IL-

10 in the present study was estimated on day 7 post infection and thus it is likely that peak 

production was missed after the primary immunisation. Post booster serum IL-10 decreased in 

both groups. Post challenge an increase in serum IL-10 was observed among all groups except the 

unchallenged and unimmunised birds (UU). Hong et al. (2006) observed a decrease in levels of 

IL-10 mRNA transcripts during E. tenella re-infection. Low IL-10 in the OC group post booster is 

indicative of a low Th2 response and high Th1 (IFNγ) activity. 

IFNγ has an important mediatory role in resistance during primary E. tenella infection in chickens 

(Zhang et al., 1995a, b). Recombinant IFNγ inhibited the development of E. tenella sporozoites 

within the cells but did not block the invasion process during in-vitro studies (Lillehoj and Choi, 

1998). Yun et al. (2000a) and Laurent et al. (2001) demonstrated upregulation of IFNγ transcripts 

in the caeca after E. tenella infection. In the present study a significant increase in IFNγ response 

of a similar magnitude was observed in rEtIMP-1 and oocyst immunised groups by 7 days post 

immunisation. Post booster serum IFNγ increased greatly in oocyst immunised birds but only 

slightly in rEtIMP-1 immunised chickens. Hong et al. (2006) observed elevation of IFNγ 

transcripts in caecal IELs during primary E. tenella infection. It was observed that oocyst 

immunisation predominantly elicited a strong Th1 response in the form of IFNγ in the later part of 

immunisation studies (booster). However, in the recombinant IMP immunised birds there was a 

strong IL-4 response as well, indicating a Th2 response, confirmed by higher IgY levels. Serum 

IFNγ levels did not increase following challenge of the oocyst immunised group, as described 

before in previously infected chickens (Yun et al., 2000a). Significant IFNγ increases were 



 

detected after challenge of the rTC and UC groups, both of which were exposed to E. tenella for 

the first time, although a reduction was detected in the recombinant IMP-1 immunised chickens. 

Such a result was unexpected and may reflect immunoprotection induced by an adjuvanted 

recombinant protein through a mechanism that is not the same as that induced by oocyst infection. 

From this study we conclude that recombinant EtIMP-1 has the potential to induce immune-

protection against challenge with a homologous E. tenella isolate. Since the first description of 

IMP-1 from E. maxima by Blake et al. (2011) orthologues have been identified and reported from 

several other apicomplexans, including EtIMP-1 from E. tenella (Yin et al., 2013), NcIMP-1 from 

N. caninum (Cui et al., 2012a), TgIMP-1 from T. gondii (Cui et al., 2012b) and PfIMP-1 from 

Plasmodium falciparum (Benjamin et al., 2015). It has been hypothesized that the protein may 

play a role in host cell invasion, although recent studies using IMP-1 knockout T. gondii (Jia et al., 

2016) suggest that, for this species, there is no essential role in cell invasion. While the function 

of IMP-1 is yet to be deciphered, the present and previous vaccination studies have indicated its 

potential as a target vaccine candidate for immunoprophylaxis against apicomplexan pathogens of 

domestic livestock and poultry.  While it remains possible that antigenic diversity may influence 

efficacy against heterologous challenge, the low level of amino acid diversity reported here 

complements that reported previously for EtAMA-1 (Blake et al., 2015) and supports the relevance 

of recombinant vaccination. Protection observed during homologous immunisation studies with 

multiple antigens such as EtMIC-1 and EtMIC-2 by Satish et al. (2011 and 2012) revealed that 

better results can be achieved by dual antigen immunisation. Inclusion of multiple antigens may 

help prevent immune-escape of variant strains and slow immune-selection for vaccine resistant 

genotypes.  
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Fig. 1. Comparison of Eimeria tenella immune mapped protein (IMP-1) coding sequences derived 

from parasites collected in three different continents including isolates from India and China, as 

well as the reference Houghton, Wisconsin and Weybridge strains. (A) targeted nucleotide and (B) 

whole allele amino acid sequences.Polymorphisms are highlighted in the open boxes. 

 

  



 

Fig. 2. Production, confirmation and characterization of recombinant EtIMP-1rEtIMP-1 blotting 

with Ni-NTA HRP conjugate (Lane 1) and 1:20 dilution of convalescent chicken serum (Lane 2). 

 

  



 

Fig. 3. Mean number of Eimeria tenella genomes in caecal tissue estimated by qPCR at 5.5 days 

post-challenge (n = 10). rIC- rEtIMP-1 immunized, rTC- Mock immunized with recombinant 

thioredoxin, OC- Immunized with E. tenella Indian isolate-1 sporulated oocysts, UC- 

Unimmunized (injected with sterile normal saline). All groups were challenged with 5000 

sporulated oocysts of E. tenella Indian isolate-1. Eimeria tenella were not detected in the UU 

(unimminzed, unchallenged) control group. Bars annotated using different letters were 

significantly different (p < 0.05). 

 

  



 

Fig. 4. Anti-EtIMP-1 IgY response in immunized and challenged chickens detected by antigen 

specific-ELISA.rIC- Immunized with rEtIMP-1, rTC- Mock immunized with recombinant 

thioredoxin, OC- Immunized with E. tenella Indian isolate-1 sporulated oocysts, UC- 

Unimmunized. All groups were challenged with 5000 sporulated oocysts of E. tenella Indian 

isolate-1. The unimmunized, unchallenged control (UU) is not shown. Different superscripts in 

small letters (a, b, c, d, e) indicate significant differences in serum anti- EtIMP-1 IgY values 

within each group over time. Different superscripts in capital letters (A, B, C, D, E) indicate 

significant changes in serum IgY values between groups for the same day. All values were 

estimated by ANOVA (Duncan’s post hoc) at p ≤ 0.05. 

 

  



 

Fig. 5. Interleukin response to immunization and Eimeria tenella challenge (A) Interleukin-4 (IL-

4) (B) Interleukin-10 (IL-10) and (C) Interferon gamma (IFNγ). rIC- Immunized with rEtIMP-1, 

rTC- Mock immunized with recombinant thioredoxin, OC- Immunized with sporulated oocysts, 

UC- Unimmunized challenged control, UU- Unimmunized, unchallenged control (only tested on 

day 35). All groups except UU were challenged with 5000 sporulated oocysts of E. tenella Indian 

isolate-1. Different superscripts in small letters (a, b, c, d, e) indicate significant differences in 

interleukinwithin a group, over time, and different superscripts in capital letters (A, B, C, D, E) 

indicate significant difference between groups for the same day. All values were estimated by 

ANOVA (Duncan’s post hoc) at p ≤ 0.05. 

 

  



 

 

 

 

 

 



 

Table 1. Details of immunization schedule employed in the vaccination/challenge study: Group 

rIC- immunized with rEtIMP-1; Group rTC- mock immunized with TXN; Group OC- orally 

immunized with oocysts; Group UC- un-immunized; Groups rIC, rTC, OC and UC challenged 

with E. tenella Indian isolate 1. Group UU- un-immunized and unchallenged. I.M* − 

Intramuscular unmarked, FIA**- Freund’s Incomplete Adjuvant, P.O***- per os (Oral gavage). 

Groups 
No. of 
birds 

Immunization - Dose and Route Challenge - (Dose and Route) 

8 day old chicken 21 day old chicken 32 day old 

Group 
rIC 10 

rEtIMP-1 50 μg I.M route* 
rEtIMP-1 50 μg ml−1 I.M 
route 

5000 oocysts E. tenella Indian 
isolate 1, P.O. Adjuvant: TiterMax gold Adjuvant: FIA**(booster) 

Group 
rTC 10 

rTRX 50 μg I.M route* TRX 50 μg ml−1 I.M route* 5000 oocysts of E. tenella Indian 
isolate 1, P.O Adjuvant: TiterMax gold Adjuvant: FIA(booster) 

Group 
OC 10 

 1000 oocysts E. tenella 
Indian isolate 1, P.O*** 

2000 oocysts E. tenella 
Indian isolate 1, 
P.O***(booster) 

5000 oocysts E. tenella Indian 
isolate 1, P.O. 

Group 
UC 10 

Sterile normal saline via IM 
route 

Sterile normal saline via IM 
route 

5000 oocysts E. tenella Indian 
isolate 1, P.O. 

Group 
UU 8 

Sterile normal saline via IM 
route 

Sterile normal saline via IM 
route - 

 

 

 

 

 

 

 

 

 

 



 

Table 2. Eimeria tenella IMP-1 allelic diversity. Polymorphic nucleotides detected in the EtIMP-

1 coding sequences derived from five isolates and the impact on amino acid identity. NS = non-

synonymous substitution, S = synonymous substitution. 

 

Alignment 
Position 
(bp) 

UK UK US China India Outcome 
Amino acid 
switch 

  Hougton Weybridge Wisconsin Beijing       

329 A A A G G NS Gly-Glu 

384 C C T C C S Asp-Asp 

618 G A G G G S Gln-Gln 

1022 A A G A A NS Asp-Gly 

1055 A T A A A NS Glu-Val 

 


