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\b stract : Wo study the spatial evaluation of a localized energy pulse in one  

dimensional perfect as well as m ass disordered (uncorrelated and correlated)  

harmonic chains. In the classical case 1 he behavior of second m om ent ( A/2( /))  

of energy distribution .strongly depends on the initial excitations, specially  

m disordered system s. T w o types of initial excitations are considered here, 

namely (a) im pulse excitation  and (b) displacement excitation . The exci­

tation is applied at a particular mass of the chain. We have shown that  

can be expressed in terms of velocity-velocity correlation function in 

the case of im pulse excitation . On the otherhand. it is energy current-energy  

current correlation function for the displacement excitation. T he  origin of  

these results has been shown to appear due to the different, kinds of initial 

occupation probability of the m odes of the system . For perfect harmonic  

(hain the difference is seen at the am plitude of A/2( /) .  On the otherhand,  

the effect is observed in the tim e exponent of M±(t )  in disordered system s.  

Our numerical calculations also support the analytical results.
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1 I n t r o d u c t i o n

Several unusual featu res have been recently  observed [1] in am o rp h o u s  sys­

tem s. For exam ple, th erm al conductiv ity  shows q u a d ra tic  te m p e ra tu re  de­

pendence a t  low tem p e ra tu re , p la teau  a t th e  in te rm ed ia te  te m p e ra tu re  and 

fu rth e r increase a t h igher tem p e ra tu re  [1]. T he  b ehav io r o f th e  therm al 

conductiv ity  from  th e  p la teau  to  the  high te m p e ra tu re  region appears to 

be understood  by d isorder and  an h arm on ic ity  [2]. It is, therefore,!essential 

to  s tudy  th e  effect of d isorder in the  tra n sp o rt  o f energy. T h is Consider­

a tion  leads us to  s tu d y  here different kinds o f u n co rre la ted  and  correlated 

disordered harm onic chains [3]. R ecently , efforts have been d irec ted  to ex­

plain th e  unexpected  fea tu res  of am orphous system s by s tu d y in g  th e  spatial 

evaluation of a  localized energy pulse and second m om ent of energy d istribu­

tion [4, 5]. T h e  in te restin g  fea tu re  o f th e  second m om en t is th a t  it exhibits 

different behavior for different kinds of in itial ex c ita tio n s, specially  in disor 

dered system . Tw o types of in itial cond itions a re  considered here, namely,

(a) im pulse exc ita tion  and  (b ) d isp lacem ent ex c ita tio n . T hey  are given at 

a  p a rticu la r  m ass o f th e  system . In earlier works [4, 5] th e  origin of this 

fea tu re , however, has no t been traced . T he u n d e rs ta n d in g  of the-behavior 

of th e  second m om ent for th e  two types o f in itia l ex c ita tio n s  is a further 

m otivation behind  th is work. O ur work is com pletely  done in Fourier space, 

w hereas, th is ty p e  of calculation is invariab ly  done in real space [4, 5]. 'l’o 

th e  best of ou r knowledge we show here for th e  first tim e th a t  such a  calcu 

lation  can be done in th e  Fourier space w ith o u t using d irectly  th e  properties 

of Bessel functions.

2  S e c o n d  m o m e n t  o f  p e r f e c t  c h a i n

We consider here a  one dim ensional perfect an d  in fin ite  harm on ic  chain 

consisting of m asses M and  springs w ith sp ring  c o n s tan t f . T h e  Ham iltonian 

H for th is  system  is
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and hm (t) =  P ^ / M  -1- ^ [(<2m+i -  Q,n)2 + (Qm -  Qm- 1 )2] ■ Here Pm and 

Qm define the  m om entum  and the displacement, respectively of the mass at 

the m th  site. We now define

u 2 =  f / M ,  P m =  P m/ M u ,  r - u t  

M O  =  K n i t ) / M u 3, H =  H / M u 2 , =  Q m -

The quant i ty  h m ( r ) / H  gives the fraction of energy th a t  resides at  the  7 7 7 -th 

site at  t ime r .  Consequently,  it can be interpre ted as the probabili ty measure  
of a localized energy packet of unit  s t rength  to be found at the site m  at 

time r .  So, the second moment  of the energy dist r ibut ion,  A/ 2( ^ ) i& defined 

as M 2(t ) =  Y im  m ( T ) / P  - where the initial excitation is in t rodm *d at 
the Oth mass.  Th e second mom en t  a t ta ins  a s t a tus  similar to the mean 

square displacement  of an electron in a crystal.  We solve the equations  of 

motion for P m ( r )  and J m ( r )  in Fourier space and conequent ly we obta in  

the expressions of second moment  .W2( r )  for two diderent types of initial 

conditions. T h e  impulse excitation initially is given at the mass a t  site 

77 = 0 i.e., /^(O) = b luv / M u ;  and (^,,(0) — 0 for all />. We then obtain

l im  M 2 ( 7-) ( 2 )

where, Sl2 ( k )  = 4 sin2 [ k / 2 ) ,  On the otherhancl, in the case of displacement  

excitation the initial conditions are P a ( 0) =  0 and Q ri(0) =  T hese  initial 

conditions in turn yields

t 1 f *  /  r ) Q \ 1
lim M 2( r ) = —  /  ( f t —  ) d k  = r 2 l  I. (3)

47T J _ n \  o k  )

Although in both cases, Af2(r )  shows the sam e lime exponent,  it is w orth­

while to note  that the am plitude differes by a factor of 2. T h e  group velocity  

of this phonon wave packet =  d Q / d k .  Hence. M 2( t ) is simply the phonon  

velocity-phonon velocity correlation function. In the case of displacem ent  

excitation, eq. (3 )  is treated as energy current-energy current correlation  

function. It can be easily shown that both the expression (2)  and (3) can  

be obtained from the standard definition o f velocity-velocity autocorrela­

tion function. T h e  difference arises because of the different kinds o f  initial
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occupation probability (M O ) / / / ) -  ,lu ‘ o f excitation ihe
initial occupation probability of all tlm m odes a ie  equal and  it is 1 / jV. 0j| 

t h e  o t h e r h a n d ,  iu  t h e  case o f  d i s p l a c e m e n t  e x c i t a t i o n  t h e  i n i t i a l  occupation 

p r o b a b i l i t y  o f  t h e  m o d e s  d e p e n d s  o n  /' t h r o u g h  A . J h e  r e l e v a n c e  o f  this 

discus,slot) will be t r a n s p a r e n t  in  th e  subsequent sections w here we discuss 

the behavior of W 2( t ) in the to tally  d isordered and  co rre la ted  disordered 

system .

3 T h e  b e h a v io r  o f  M 2{ t ) in  u n c o r r e l a t e d  a n d  c o r ­

r e l a t e d  d i s o r d e r e d  h a r m o n i c  c h a i n s

We first consider the uncorrelated  mass disordered harm onic chain composed 

of mass m p< with say w p -  1 and ///,/. T he spring constan t /  is considered to 

be unity in all cases discussed below. Since d isorder in th e  m ass disordered 

harmonic chain vanishes at il = 0, it has been shown th a t  the system  sustains 

~  y/N  nonscattered  modes in the neighborhood of 1 he zero frequency mode 

[6]. Ar defines I he size of the sam ple. T he num ber of n o n sca tte red  modes 

around zeio frequency can be increased by int inducing  the co rre la tion  among 

masses. For exam ple, consider a binarry system  com posed of m asses m r and 

a sym m etric trim eric mass system . 'The central m ass of th is trim er is w u 

and other two masses are m s. W hen m {) -  3 -  2 w s and 0 < m s < 3 /2 , 

a doubly degenerate reflectionless m ode i* ob tained  a t ft =  (). In th is case 

the num ber of nonscattered  modes around zero frequency is ~  Ar5/ f> [3]. We 

employ here the DKP formula [7] to  calcu late the  asy m p to tic  behavior of 

in tim e, r  for the two different, initial conditions.

(a )  Im p u ls e  e x c i t a t io n

Suppose the width of the nonscatered m odes in the reciprocal space, 

AA* ~  N ** and ii > 0. As the nonsca tte red  m odes are  responsible for 

the energy transport we in tegra te  the eq. (2) w ithin the  region A k. Then 
according to  1)KP we ob tain
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Figure 1. P lot of M 2( / ) / t 15 with Figure 2. Plot of M 2( t )  as a func-
timc t for uncorrelated mass disor- tion of t for symmetric trimer chain
dered harmonic chains with the ini- with degenerate resonances at ft =  0
tially given impulse excitation. with the initially given impulse ex­

citation.

Furthermore, as group velocity u is ~  unity around zero frequency, we obtain  

N ^  t . Since for completely disordered harmonic chain ft =  1 /2 ,  M 2 ( r )  ~  

t3/ 2/27r. In the case of symmetric random trimer chain with degenerate  

resonances we have =  1 /6 .  Hence, from the formula (4) we obtain M 2( t ) ~  

r 11/ 6/ 2 tt. The values of the exponents in numerical calculations (figure 1 and 

figure 2) are in excellent agreement with our analytical results.

(b ) D is p la c e m e n t  E x c i ta t io n

Applying the same procedure to eq. (3), we obtain

j.2  f k i n u x
—  /  sin2 k dk =  —— ( Afr)3. (5)
4 tt J 0 I27t

for completely random system  tlie eq. (5) gives ,4/ 2( 1") r 1/ 2/  127T. On

the otherhand for the symmetric trimer model with degenerate resonances  

at ft =  o, we obtain M i {t ) ~  r 15 /r2ir . Some oi our. prototype results of 

numerical calculations are shown in figure 3 and figure 4. In the case o f  un­

correlated m ass  disordered chain we observe the oscillating behavior in A ^ t )  

48 well as the  increasing tendency with tim e 1. We fitted the plots with the
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Figure 3. Plot of M 2( t ) / t ?  6 against  
t for uncorrelated mass disordered 
harmonic chains with the initially 
given displacement excitation.

Figure 4. Plot of A ^ C ) / / 1'5 as a
function / for symmetric trimer chain 
with degenerate resonances at ft =  0 
with the initially given displacement 
excitation.

exponent 0.6 of time f. The exponents in this case however, is significantly 

larger than the expected value (0.5). The spectrum of the complete disor­

dered system contains many fringe resonances around zero frequency. The 

position of these resonances depends on the sample length as well as on the 

sample. Since all the nonscattered modes have equal occupation probabil­

ity as (l/JV) in the case of momentum excitation they contribute equally to 

Af2(t). On the otherhand, for displacement excitation the occupation proba­

bility of the nonscattered modes is given by Q 2( k ) / 2 N . So, the contribution 

of these modes to M i ( t )  is weighted by ft(/»*)- Consequently, the fringe res­

onances contribute significantly to A/2( /-)- The fluctuation occurs because 

fringe resonances appear randomly. To prove this we studied A/2O  with the 

displacement excitation of the symmetric random trimer model with dgen- 

erate resonances at ft =  0 (figure 4). The expected value of the exponent 

is 1.5. The observed value agrees well with the prediction. Furthermore, 

the evoluation of M 2O  does not show any perceptible fluctuation. This is 

obtained because the width of the nonscattered modes is large comparative
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to th a t  in th e  u n co rre la ted  disordered system . Hence, the con tribu tion  from 

the fringe resonances is suppressed.

4 Conclusion

The main features o f  this study are :

1) T he second m om ent, M 2 ( t )  shows velocity-velocity correlation for impulse  

excitation and energy current-energy current correlation for displacem ent  

excitation. However, both the expression originally come from the velocity-  

velocity autocorrelation function. T he  disimilarity arises due to different 

kinds of  initial occupation probability of the modes of the system . For 

impulse excitation  the ocupation probability is 1 / N ,  whereas it is fy2/'2A; 

for displacement excitation .

2) T he  tim e exponent of M ^ l )  in disordered system s also depends on the  

correlation and the initial occupation probability of the m odes in the system .

3) So, the correlation and the initial occupation probability of the m odes  

can be used as control parameter in the study of low tem perature thermal  

conductivity of  am orphous materials.
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