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Abstract : We study the spatial evaluation of a localized energy pulse in one
dimensional perfect as well as mass disorderdd (uncorrelated and correlated)
harmonic chains. In the classical case the behavior of second moment (M,(t))
of energy distribution strongly depends on the initial excitations, specially
m disordered systems. Two types of initial excitations are considered here,
namely (a) impulse excitation and (b) displacement excitation. The exci-
tation is applied at a particular mass of the chain. We have shown that
M,(1) can be expressed in terms of velocity-velocity correlation function in
the case of impulse excitation. On the otherhand. it is energy current-energy
current correlation function for the displacement excitation. The origin of
these results has been shown to appear duc to the different Kinds of initial
occupation probabilitv of the modes of the system. lor perfect harmonic
chain the difference is seen at the amplitude of My(f). On the otherhand.
the éffect is observed in the time exponent of A,(t) in disordered systems.

Our numerical calculations also support the analyvtical results.
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1 Introduction

Several unusual features have been recently observed [1] in amorphous sys.
tems. For example, thermal conductivity shows quadratic temperature de-
pendence at low temperature, plateau at the intermediate temperature and
further increase at higher temperature {1]. The behavior of the thermal
conductivity from the plateau to the high temperature region a.Ppea.rs to
be understood by disorder and anharmonicity [2]. It is, therefore, essential
to study the effect of disorder in the transport of energv. This Xonsider-
ation leads us to study here different kinds of uncorrelated and correlated
disordered harmonic chains [3]. Recently, efforts have been directed to ex-
plain the unexpected features of amorphous systeims by studying the spatial
evaluation of a localized energy pulse and second moment of energy distribu-
tion (4, 5. The interesting feature of the second moment is that it exhibits
different behavior for different kinds of initial excitations, specially in disor
dered system. Two types of initial conditions are considefed here, namely.
(a) impulse excitation and (b) displacement excitation. They are given at
a particular mass of the system. In earlier works [4, 5] the origin of this
feature, however, has not been traced. The understanding of the:behavior
of the second moment for the two types of initial excitations is a further
motivation behind this work. Qur work is completely done in Fourier space.
whereas, this type of calculation is invariably done in real space [4, 5]. To
the best of our knowledge we show here for the first time that such a calcu
lation can be done in the Fourier space without using directly the properties
of Bessel functions.

2 Second moment of perfect chain

We consider here a one dimensional perfect and infinite harmonic chain
consisting of masses M and springs with spring constant f. The Hamiltonian
H for this system is

H=3) hnt) )
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and ’-"m(t) = ﬁ%/M + é [(Q111+1 - Qm )2 + ((2111 - Qm—] )2] . Here ﬁm and
Qm define the momentum and the displacement respectively of the mass at
the mth site. We now define

w'Z = f/juv P, = ~m/Mw. T=wt
hm(t) = ’.lm(t)/sz' H = FI/Alwz‘ Jm = Qm - Qm—l.

The quantity h,,(7)/H gives the fraction of energy that resides at the m-th
site at time 7. Consequently, it can be interpreted as the probability measure
of a localized energy packet of unit strength 1o be found at the site m at
time 7. So, the second moment of the encrgy distribution. A7y(7) is defined
as Ma(t) = 3, m?hy,(7)/H. where the initial excitation is introduc d at
the Oth mass. The second moment attains a status similar to the mean
square displacement of an electron in a crystal. We solve the equations of
motion for P,,(7) and J,,(7) in Fourier space and conequently we obtain
the expressions of second moment M,(7) for two dillerent tvpes of initial
conditions. The impulse excitation initiallyv is given at the mass at site
n=01ie., P 0)=b,¢/Mwand Q,(0) =0 lor all n. We then obtain
2
lim My(7) = Ii /7r (%?) dh = 12/2. (2)

T 2T J_,
where, Q%(k) = 4sin?(k/2). On the othierhand. in the case of displacement
excitation the initia) conditions are P, (0) = 0 and Q,(0) = é,, . These initial
conditions in turn yields

. T2 [T ON? , ,
rlgl.;oM'Z(T)_ 4—7r '/;” (Q-JIT) dk =71°/1. (3)

Although in both cases, M,(7) shows Lthe same Ltime exponent. it is worth-
while to note that the amplitude differes by a factor of 2. The group velocity
of this phonon wave packet v, = dQ/dk. Hence. My(7) is simply the phonon
velocity-phonon velocity correlation function. In the case of dNsplacement
excitation, eq. (3) is treated as-energy current-energy current correlation
function. It can be easily shown that hoth the expression (2) and (3) can
be obtained from the standard definition of velocity-velocity autocorrela-

tion function. The difference arises because of the diflerent kinds of initial
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occupation probability (hi(0)/ ). For the case of impulse excitation e
initial occupation probability of all the modes are equal and it is 1/N Ou
the otherhand, in the case of displacement excitation the initial occupatioy
probability of the modes depends on k through QZ/2N. The relevance of this
discussion will be transparent in the subsequent sections where we discuss

the behavior of My(T) in the totally disordered and correlated disordered

system.

\
3 The behavior of 1/,(7) in uncorrelated and\:\cor-

related disordered harmonic chains

We first consider the uncorrelated mass disordered harmonic chain composed
of mass m,. with sav m, = 1 and my. The spring constant [ is considered to
be unity in all cases discussed below. Since disorder in the mass disordered
harmonic chain vanishes at £ = 0. it has been shown that the system sustains
~ VN nouscattered modes in the neighborhood of the zero fifequency mode
[6). N dehnes the size of the sample. The number of nonscattered modes
around zero [requency can be mercased by intioducing the correlation among
masses. For example, consider a binarry system composed of masses m,, and
a symmetric trimeric mass system. The central mass of this trimer is myg
and other two masses are my. When g = 3 — 2m, and 0 < m, < 3/2.
a doubly degencrate reflectionless mode is obtained at © = 0. In this case
the number of nonscattered modes around zero frequency is ~ N 5/6 [3]. We
employ here the DRI’ formula [7] to calculate the asymptotic behavior of
My(7) in time, 7 for the two different initial conditions.

(a) Impulse excitation -

Suppose the width of the nonscatered modes in the reciprocal space.
Ak ~ N=% aud 3 > 0. As the nonscattered modes are responsible for
the energy transport we integrate the eq. (2) within the region Ak. Then
according to DKP we obtain

Tz kmux ()(2 2 T.‘!
My(r "’“/ — lk = — Ak, 4
5 (w--) k= grh (4)



Effect of nonscattered modes on energy transport etc

195
20
2R+008.
3;_- Least squares fit 0.384 ('™
4 m, =05 me = 2
5
: my = 7 2E+008
P
0] ]
s S 1E+008
N ?
05 1 ]
l/‘ myg = ¢ “*006-_
mg = 10 3
e P—— 3
0 1000 2000 3000 4000 OE+000  AAARARABAELS S oy vy
TIME (t) 1000 3000 4000

2000
TIME (t)

Figure 1. Plot of M,(1)/t!'3 with Figure 2. Plot of M>(t) as a func-

time t for uncorrelated mass disor- tion of t for symmetric trimer chain

dered harmonic chains with the ini- with degenerate resonances at = 0

tially given impulse excitation. with the initially given impulse ex-
' citation.

Furthermore, as group velocity v is ~ unity aronnd zero frequency, we obtain
N ~ 1. Since for completely disordered harmonic chain 3 = 1/2, My(7) ~
/2/2x. In the case of symmetric random trimer chain with degenerate
resonances we have J = 1/6. Hence, from the formula (4) we obtain Mp(7) ~
r11/6/2x. The values of the exponents in numerical calculations (figure 1 and
figure 2) are in excellent agreement with our analytical results.

(b) Displacement Excitation

Applying the same procedure to eq. (3). we obtain

T2 kmaJ s T2 B
My(t)~ :l-;r—/(; sin kdk = I—_ZTr(Ak)d- (5)

For completely random system the eq. (5) gives My(7) ~ 71/2/12r. On
the otherhand for the symmetric trimer model with degenerate resonances
at Q = 0, we obtain My(t) ~ 71%/127. Some of our. prototype results of
numerical calculations are shown in figure 3 and figure 4. In the case of un-
correlated mass disordered chain we observe the oscillating behavior in M3(t)
as well as the increasing tendency with time t. We fitted the plots with the
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Figure 3. Plot of M;(t)/t>€ against  Figure 4. Plot of My(1)/t'5 as a

t for uncorrelated mass disordered  function t for symmetric trimer chain

harmonic chains with the initially ~ with degenerate resonances at Q = 0

given displacement excitation. with the initially given displacement
excitation.

exponent 0.6 of time ¢. The exponents in this case however, is significantly
larger than the expected value (0.5). The spectrum of the complete disor-
dered system contains many fringe resonances around zero frequency. The
position of these resonances depends on the sample length as well as on the
sample. Since all the nonscattered modes have equal occupation probabil-
ity as (1/N) in the case of momentum excitation they contribute equally to
M;(t). On the otherhand, for displacement excitation the occupation proba-
bility of the nonscattered modes is given by Q'z(k)/'ZN_. So, the contribution
of these modes to My(t) is weighted by Q(k). Consequently, the fringe res-
onances contribute significantly to M,(t). The fluctuation occurs because
fringe resonances appear randomly. To prove this we studied M,(t) witl the
displacement excitation of the symmetric random trimer model with dgen-
erate resonances at {1 = 0 (figure 4). The expected value of the exponent
is 1.5. The observed value agrees well with the prediction. Furthermore,
the evoluation of M;(t) does not show any perceptible fluctuation. This is
obtained because the width of the nonscattered modes is large comparative
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to that in the uncorrelated disordered system. Hence, the contribution from

the fringe resonances is suppressed.

4 Conclusion

The main features of this study are :

1) The second moment, M,(t) shows velocity-velocity correlation for impulse
excitation and energy current-energy current correlation for displacement
excitation. However, both the expression originally come from the velocity-
velocity autocorrelation function. The disimilarity arises due to different
kimds of initial occupation probability of the modes of the system. For
impulse excitation the ocupation probability is 1/N, wlereas it is Q2N
for displacement excitation. '

2) The time exponent of M,(1) in disordered systems also depends on the
correlation and the initial occupation probability of the modes in the system.
3) So, the correlation and the initial occupation probability of the modes
can be used as control parameter in the study of low temperature thermal

conductivity of amorphous materials.
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