44 research outputs found

    Circulation of SARS-CoV-2 Variants among Children from November 2020 to January 2022 in Trieste (Italy)

    Get PDF
    Introduction: The ongoing coronavirus disease 19 (COVID-19) outbreak involves the pediatric population, but to date, few reports have investigated the circulation of variants among children. Material and Methods: In this retrospective study, non-hospitalized pediatric patients with SARS-CoV-2-positive nasopharyngeal swabs (NPS) were enrolled at the Institute for Maternal and Child Health-IRCCS Burlo Garofolo, Trieste (Italy), from November 2020 to January 2022. SARS-CoV-2 variants were identified by in vitro viral isolation, amplification, automatic sequencing of the receptor binding domain (RBD) of the SARS-CoV-2 spike coding gene, and subsequent nextgeneration sequencing. The growth curves of the isolated strains were defined in vitro by infecting Vero-E6 cells and quantifying the viral load in the supernatants up to 72 h post-infection by qRT– PCR. The neutralization activity of sera obtained from a COVID-19 vaccinated subject, recovered (2020) patient, vaccinated and recovered (2021) patient, and seronegative subject was assessed by microneutralization assay against the different variants. Results: In total, 32 SARS-CoV-2-positive children, 16 (50%) females, with a median age of 1.4 years (range: 1 day–13 years), were enrolled. The D614G amino acid substitution was detected in all isolated and amplified viral strains. Of the 32 isolates, 4 (12.5%) carried a nonsynonymous nucleotide mutation leading to the N439K (3/4), lineage B.1.258 (∆H69/∆V70), and S477N (1/4) substitution. In 7/32 (21.8%) isolates, amino acid substitutions allowed the identification of a delta variant, lineage B.1.617.2-AY.43, and in 1/32 (3.1%), the Omicron strain (B.1.1.529.BA1) was identified. The growth curves of the B.1, B.1.258 (∆H69/∆V70), B.1.617.2-AY.43, and B.1.1.529.BA1 variants did not show any significant differences. A reduction in the serum neutralizing activity against B.1.258 (∆H69/∆V70) only in a vaccinated subject (1.7-fold difference), against B.1.617.2-AY.43 in a vaccinated subject and in recovered patients (12.7 and ≥2.5-fold differences, respectively), and against B.1.1.529.BA1 variant (57.6-and 1.4-fold differences in vaccinated and in vaccinated and recovered patients) were observed compared to the B.1 variant. Conclusions: SARS-CoV-2 variants carrying the B.1.258 (∆H69/∆V70) and S477N substitutions were reported here in a pediatric population for the first time. Although the growth rates of the isolated strains (B.1.258, B.1.617.2-AY.43, B.1.1.529.BA1) did not differ from the B.1 variant, neutralizing activity of the sera from vaccinated subjects significantly decreased against these variants. Attention should be devoted to the pediatric population to prevent the spread of new SARS-CoV-2 variants in an unvaccinated and predominantly naive population

    Circulating miR-184 is a potential predictive biomarker of cardiac damage in Anderson–Fabry disease

    Get PDF
    open21noFunding: This work was supported by the Italian Ministry of Health (PE-2013-02356818) to GCEnzyme replacement therapy (ERT) is a mainstay of treatment for Anderson–Fabry disease (AFD), a pathology with negative effects on the heart and kidneys. However, no reliable biomarkers are available to monitor its efficacy. Therefore, we tested a panel of four microRNAs linked with cardiac and renal damage in order to identify a novel biomarker associated with AFD and modulated by ERT. To this end, 60 patients with a definite diagnosis of AFD and on chronic ERT, and 29 age- and sex-matched healthy individuals, were enrolled by two Italian university hospitals. Only miR-184 met both conditions: its level discriminated untreated AFD patients from healthy individuals (c-statistic = 0.7522), and it was upregulated upon ERT (P < 0.001). On multivariable analysis, miR-184 was independently and inversely associated with a higher risk of cardiac damage (odds ratio = 0.86; 95% confidence interval [CI] = 0.76–0.98; P = 0.026). Adding miR-184 to a comprehensive clinical model improved the prediction of cardiac damage in terms of global model fit, calibration, discrimination, and classification accuracy (continuous net reclassification improvement = 0.917, P < 0.001; integrated discrimination improvement [IDI] = 0.105, P = 0.017; relative IDI = 0.221, 95% CI = 0.002–0.356). Thus, miR-184 is a circulating biomarker of AFD that changes after ERT. Assessment of its level in plasma could be clinically valuable in improving the prediction of cardiac damage in AFD patients.openSalamon I.; Biagini E.; Kunderfranco P.; Roncarati R.; Ferracin M.; Taglieri N.; Nardi E.; Laprovitera N.; Tomasi L.; Santostefano M.; Ditaranto R.; Vitale G.; Cavarretta E.; Pisani A.; Riccio E.; Aiello V.; Capelli I.; La Manna G.; Galie N.; Spinelli L.; Condorelli G.Salamon I.; Biagini E.; Kunderfranco P.; Roncarati R.; Ferracin M.; Taglieri N.; Nardi E.; Laprovitera N.; Tomasi L.; Santostefano M.; Ditaranto R.; Vitale G.; Cavarretta E.; Pisani A.; Riccio E.; Aiello V.; Capelli I.; La Manna G.; Galie N.; Spinelli L.; Condorelli G

    Heme catabolism by tumor-associated macrophages controls metastasis formation

    Get PDF
    Although the pathological significance of tumor-associated macrophage (TAM) heterogeneity is still poorly understood, TAM reprogramming is viewed as a promising anticancer therapy. Here we show that a distinct subset of TAMs (F4/80hiCD115hiC3aRhiCD88hi), endowed with high rates of heme catabolism by the stress-responsive enzyme heme oxygenase-1 (HO-1), plays a critical role in shaping a prometastatic tumor microenvironment favoring immunosuppression, angiogenesis and epithelial-to-mesenchymal transition. This population originates from F4/80+HO-1+ bone marrow (BM) precursors, accumulates in the blood of tumor bearers and preferentially localizes at the invasive margin through a mechanism dependent on the activation of Nrf2 and coordinated by the NF-κB1–CSF1R–C3aR axis. Inhibition of F4/80+HO-1+ TAM recruitment or myeloid-specific deletion of HO-1 blocks metastasis formation and improves anticancer immunotherapy. Relative expression of HO-1 in peripheral monocyte subsets, as well as in tumor lesions, discriminates survival among metastatic melanoma patients. Overall, these results identify a distinct cancer-induced HO-1+ myeloid subgroup as a new antimetastatic target and prognostic blood marker

    The K219T-Lamin mutation induces conduction defects through epigenetic inhibition of SCN5A in human cardiac laminopathy

    Get PDF
    Mutations in LMNA, which encodes the nuclear proteins Lamin A/C, can cause cardiomyopathy and conduction disorders. Here, we employ induced pluripotent stem cells (iPSCs) generated from human cells carrying heterozygous K219T mutation on LMNA to develop a disease model. Cardiomyocytes differentiated from these iPSCs, and which thus carry K219T-LMNA, have altered action potential, reduced peak sodium current and diminished conduction velocity. Moreover, they have significantly downregulated Nav1.5 channel expression and increased binding of Lamin A/C to the promoter of SCN5A, the channel’s gene. Coherently, binding of the Polycomb Repressive Complex 2 (PRC2) protein SUZ12 and deposition of the repressive histone mark H3K27me3 are increased at SCN5A. CRISPR/Cas9-mediated correction of the mutation re-establishes sodium current density and SCN5A expression. Thus, K219T-LMNA cooperates with PRC2 in downregulating SCN5A, leading to decreased sodium current density and slower conduction velocity. This mechanism may underlie the conduction abnormalities associated with LMNA-cardiomyopathy

    Neutrophils Driving Unconventional T Cells Mediate Resistance against Murine Sarcomas and Selected Human Tumors

    Get PDF
    Neutrophils are a component of the tumor microenvironment and have been predominantly associated with cancer progression. Using a genetic approach complemented by adoptive transfer, we found that neutrophils are essential for resistance against primary 3-methylcholantrene-induced carcinogenesis. Neutrophils were essential for the activation of an interferon-γ-dependent pathway of immune resistance, associated with polarization of a subset of CD4- CD8- unconventional αβ T cells (UTCαβ). Bulk and single-cell RNA sequencing (scRNA-seq) analyses unveiled the innate-like features and diversity of UTCαβ associated with neutrophil-dependent anti-sarcoma immunity. In selected human tumors, including undifferentiated pleomorphic sarcoma, CSF3R expression, a neutrophil signature and neutrophil infiltration were associated with a type 1 immune response and better clinical outcome. Thus, neutrophils driving UTCαβ polarization and type 1 immunity are essential for resistance against murine sarcomas and selected human tumors

    ETS Transcription Factors Control Transcription of EZH2 and Epigenetic Silencing of the Tumor Suppressor Gene Nkx3.1 in Prostate Cancer

    Get PDF
    ETS transcription factors regulate important signaling pathways involved in cell differentiation and development in many tissues and have emerged as important players in prostate cancer. However, the biological impact of ETS factors in prostate tumorigenesis is still debated.We performed an analysis of the ETS gene family using microarray data and real-time PCR in normal and tumor tissues along with functional studies in normal and cancer cell lines to understand the impact in prostate tumorigenesis and identify key targets of these transcription factors. We found frequent dysregulation of ETS genes with oncogenic (i.e., ERG and ESE1) and tumor suppressor (i.e., ESE3) properties in prostate tumors compared to normal prostate. Tumor subgroups (i.e., ERG(high), ESE1(high), ESE3(low) and NoETS tumors) were identified on the basis of their ETS expression status and showed distinct transcriptional and biological features. ERG(high) and ESE3(low) tumors had the most robust gene signatures with both distinct and overlapping features. Integrating genomic data with functional studies in multiple cell lines, we demonstrated that ERG and ESE3 controlled in opposite direction transcription of the Polycomb Group protein EZH2, a key gene in development, differentiation, stem cell biology and tumorigenesis. We further demonstrated that the prostate-specific tumor suppressor gene Nkx3.1 was controlled by ERG and ESE3 both directly and through induction of EZH2.These findings provide new insights into the role of the ETS transcriptional network in prostate tumorigenesis and uncover previously unrecognized links between aberrant expression of ETS factors, deregulation of epigenetic effectors and silencing of tumor suppressor genes. The link between aberrant ETS activity and epigenetic gene silencing may be relevant for the clinical management of prostate cancer and design of new therapeutic strategies

    ERG Deregulation Induces PIM1 Over-Expression and Aneuploidy in Prostate Epithelial Cells

    Get PDF
    The ERG gene belongs to the ETS family of transcription factors and has been found to be involved in atypical chromosomal rearrangements in several cancers. To gain insight into the oncogenic activity of ERG, we compared the gene expression profile of NIH-3T3 cells stably expressing the coding regions of the three main ERG oncogenic fusions: TMPRSS2/ERG (tERG), EWS/ERG and FUS/ERG. We found that all three ERG fusions significantly up-regulate PIM1 expression in the NIH-3T3 cell line. PIM1 is a serine/threonine kinase frequently over-expressed in cancers of haematological and epithelial origin. We show here that tERG expression induces PIM1 in the non-malignant prostate cell line RWPE-1, strengthening the relation between tERG and PIM1 up-regulation in the initial stages of prostate carcinogenesis. Silencing of tERG reversed PIM1 induction. A significant association between ERG and PIM1 expression in clinical prostate carcinoma specimens was found, suggesting that such a mechanism may be relevant in vivo. Chromatin Immunoprecipitation experiments showed that tERG directly binds to PIM1 promoter in the RWPE-1 prostate cell line, suggesting that tERG could be a direct regulator of PIM1 expression. The up-regulation of PIM1 induced by tERG over-expression significantly modified Cyclin B1 levels and increased the percentage of aneuploid cells in the RWPE-1 cell line after taxane-based treatment. Here we provide the first evidence for an ERG-mediated PIM1 up-regulation in prostate cells in vitro and in vivo, suggesting a direct effect of ERG transcriptional activity in the alteration of genetic stability

    Knockdown of PTGS2 by CRISPR/CAS9 System Designates a New Potential Gene Target for Melanoma Treatment.

    No full text
    CRISPR/Cas9 has become a powerful method to engineer genomes and to activate or to repress genes expression. As such, in cancer research CRISPR/Cas9 technology represents an efficient tool to dissect mechanisms of tumorigenesis and to discover novel targets for drug development. Here, we employed the CRISPR/Cas9 technology for studying the role of prostaglandin-endoperoxide synthase 2 (PTGS2) in melanoma development and progression. Melanoma is the most aggressive form of skin cancer with a median survival of less than 1 year. Although oncogene-targeted drugs and immune checkpoint inhibitors have demonstrated a significant success in improving overall survival in patients, related toxicity and emerging resistance are ongoing challenges. Gene therapy appears to be an appealing option to enhance the efficacy of currently available melanoma therapeutics leading to better patient prognosis. Several gene therapy targets have been identified and have proven to be effective against melanoma cells. Particularly, PTGS2 is frequently expressed in malignant melanomas and its expression significantly correlates with poor survival in patients. In this study we investigated on the effect of ptgs2 knockdown in B16F10 murine melanoma cells. Our results show that reduced expression of ptgs2 in melanoma cells: i) inhibits cell proliferation, migration, and invasiveness; ii) modulates immune response by impairing myeloid derived suppressor cell differentiation; iii) reduces tumor development and metastasis in vivo. Collectively, these findings indicate that ptgs2 could represent an ideal gene to be targeted to improve success rates in the development of new and highly selective drugs for melanoma treatment
    corecore