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SUMMARY

Neutrophils are a component of the tumor microenvi-
ronment and have been predominantly associated
with cancer progression. Using a genetic approach
complemented by adoptive transfer, we found that
neutrophils are essential for resistance against pri-
mary 3-methylcholantrene-induced carcinogenesis.
Neutrophils were essential for the activation of an
interferon-g-dependent pathway of immune resis-
tance, associated with polarization of a subset of
CD4� CD8� unconventional ab T cells (UTCab). Bulk
and single-cell RNA sequencing (scRNA-seq) ana-
lyses unveiled the innate-like features and diversity
of UTCab associated with neutrophil-dependent
anti-sarcoma immunity. In selected human tumors,
including undifferentiated pleomorphic sarcoma,
CSF3R expression, a neutrophil signature and
neutrophil infiltration were associated with a type 1
immune response and better clinical outcome.
Thus, neutrophils driving UTCab polarization and
type 1 immunity are essential for resistance against
murine sarcomas and selected human tumors.

INTRODUCTION

Neutrophils are the most abundant cell type in human peripheral

blood and represent the first line of defense against invading mi-
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croorganisms (Kolaczkowska and Kubes, 2013). Neutrophils

play an important role in the activation and orchestration of acute

inflammatory reactions (Borregaard, 2010; Ley et al., 2018).

Moreover, neutrophils have emerged as important players in

the regulation of innate and adaptive immunity and in chronic

inflammation (Mantovani et al., 2011; Nicolás-Avila et al., 2017).

Neutrophils are present in the tumor microenvironment (TME)

and their function is regulated by signals produced by cancer

cells and immune cells (Coffelt et al., 2016; Eruslanov et al.,

2017; Ponzetta et al., 2017). Neutrophils and the myeloid growth

factor granulocyte-colony stimulating factor (G-CSF) have pre-

dominantly been associated with tumor progression (Coffelt

et al., 2016; Wculek and Malanchi, 2015). On the other hand, un-

leashed neutrophilic effectors have also been reported to

mediate anti-cancer resistance (Colombo et al., 1991; Finis-

guerra et al., 2015; Fridlender et al., 2009; Granot et al., 2011;

Massara et al., 2018; Sagiv et al., 2015; Singhal et al., 2016).

For instance, neutrophils have been shown to regulate the func-

tion of conventional CD4+ andCD8+ tumor-infiltrating T cells with

activating or suppressive effects, thus influencing tumor growth

(Mantovani et al., 2011; Nicolás-Avila et al., 2017). In addition to

conventional T cells, neutrophils can also modulate the activa-

tion of gd T cells, regulating their interleukin (IL)-17A production

in cancer (Coffelt et al., 2015).

Available evidence on the role of neutrophils in carcinogenesis

and tumor progression is essentially based on antibody-medi-

ated cell depletion (Coffelt et al., 2015; Fridlender et al., 2009;

Granot et al., 2011; Ponzetta et al., 2017). Given the intrinsic lim-

itations of this approach including duration, specificity, and

perturbation of the system (Faget et al., 2018; Granot et al.,
by Elsevier Inc.
commons.org/licenses/by/4.0/).
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Figure 1. Neutrophils Mediate Resistance to 3-MCA-Induced Sarcomagenesis

(A and B) Tumor (A) incidence and (B) growth of 3-MCA induced sarcomas in Csf3r+/+ and Csf3r�/� mice.

(C) Tumor growth of 3-MCA-induced sarcoma in Csf3r+/+ and Csf3r�/� mice upon adoptive transfer of neutrophils (NF) in Csf3r�/� mice. 3 3 106 BM NF were

intravenously (i.v.) transferred once a week (time points indicated by arrows) starting from the first day the tumor was palpable. Tumor growth is represented as

volume over time after the first tumor observation.

Data are mean ± SEM (A and B) or mean ± SD (C). *p % 0.05, ***p % 0.001. (A and C) Wilcoxon matched-pairs signed-rank test.

See also Figures S1 and S2 and Table S1.
2011; Moses et al., 2016), we set out to assess the role of neutro-

phils using a genetic strategy and a classic model of 3-methyl-

cholanthrene (3-MCA)-induced carcinogenesis (Bonavita et al.,

2015; Kaplan et al., 1998; Shankaran et al., 2001). We took

advantage of genetic deficiency of G-CSF-R, a strategy analo-

gous to that used to dissect the role of tumor-associated macro-

phages (TAMs) (Lin et al., 2001).

Unexpectedly, we found that neutrophils mediate resistance

against primary carcinogenesis. Neutrophil-driven antitumor

resistance was dependent on interferon-g (IFNg) produced by

T cells. Neutrophil deficiency was associated with a selective

impairmentof type1polarizationand IFNgproductionbyasubset

of unconventional CD4�CD8� ab T cells (UTCab). As assessedby

flow cytometry and single-cell RNA sequencing (scRNA-seq) an-

alyses, UTCab were present in the sarcoma TME and were func-

tionally regulated by neutrophils. Neutrophil infiltrationwas found

to be associated with better prognosis and higher IFNG expres-

sion in human undifferentiated pleomorphic sarcomas (UPS)

and in selected tumors. Thus, in murine sarcomas and selected

human tumors, neutrophils are an essential component of type

1 antitumor immunity. More in general, the role of UTCab in anti-

tumor immunity may have been underestimated.

RESULTS

Neutrophils Mediate Resistance against Primary 3-MCA
Sarcomagenesis
Genetic deficiency of the G-CSF-R (Csf3r�/�) caused a profound

neutropenia in the peripheral blood of healthy mice (Figure S1A)

(Liu et al., 1996). In the 3-MCA-induced sarcomamodel,Csf3r�/�

mice showed earlier tumor development and increased tumor

growth and weight, compared to wild type mice (Figures 1A,

1B, and S1B). The increased susceptibility of Csf3r�/� to

3-MCA carcinogenesis was consistently observed in 20 experi-

ments conducted over a period of 4 years, although as expected

for primary carcinogenesis, with variability from experiment

to experiment (6 experiments are shown in Figures 1A and

S1C–S1G).
Dysbiosis is known to impact on carcinogenesis and anti-tu-

mor responses (Zitvogel et al., 2015). However, cohousing did

not affect sarcoma susceptibility (Figure S1H), excluding that

a potential dysbiosis associated with Csf3r deficiency was

involved in the observed phenotype.

In bone marrow chimeras, increased susceptibility to sarco-

magenesis was associated with G-CSF-R deficiency in hemato-

poietic cells and neutrophil depletion by an anti-Ly6G antibody

accelerated tumor development (Figures S1I and S1J). Adoptive

transfer of bone marrow Csf3r+/+ neutrophils (purity >98.5%)

(Figure S1K) into Csf3r�/� sarcoma-bearing mice was sufficient

to completely rescue tumor growth to the level of Csf3r+/+ con-

trols (Figure 1C). Collectively, these results provide unequivocal

genetic evidence that neutrophils mediate protection against pri-

mary 3-MCA sarcomagenesis.

Tumor-Associated Neutrophils in Csf3r+/+ Mice Display
an Activated Phenotype
The number of CD45+ cells infiltrating the tumor was similar in

Csf3r�/� andCsf3r+/+ mice (Figure S2A). Tumor-associated neu-

trophils (TANs) were virtually absent in Csf3r�/� tumors (Figures

S2B and S2C). In Csf3r+/+ sarcoma-bearing mice, TANs dis-

played an activated phenotype, characterized by increased

expression of CD11b and CD54 and decreased expression of

CD62L, compared to peripheral blood neutrophils (Figures

S2D–S2F). mRNA expression of pro-inflammatory genes such

as Cxcl10, Il23a, Arg1, Nos2, Ccl2, Ifng, Ccl3, Met, and Il27p28

in sorted TANs was increased, compared to naive bone marrow

neutrophils (Figure S2G). Thus, TANs presented a mixed pheno-

type expressing both N1-like (e.g., CD54, Ccl3, Nos2, and Met)

and N2-like (e.g., Arg1 and Ccl2) markers (Finisguerra et al.,

2015; Fridlender et al., 2009).

Neutrophil Deficiency Is Associated with Altered
Polarization of Tumor-Associated Macrophages
The number of TAMs was significantly increased in Csf3r�/�

mice (Figures S2B and S2C). The increased frequency of TAMs

in Csf3r�/� mice was associated with increased proliferation
Cell 178, 346–360, July 11, 2019 347
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Figure 2. Neutrophils Mediate Tumor Resistance by Inducing a Macrophage-Dependent Activation of Type 1 Immunity

(A) Il12a and Il12bmRNA expression (normalized on fluorescence minus one [FMO]) in myeloid cells infiltrating the 3-MCA injection site, analyzed by PrimeFlow

RNA assay.

(B and C) IFNg (B) and IL-12p70 (C) concentrations at the 3-MCA injection site (10 days after 3-MCA administration) after treatment with anti-CD115 antibody or

isotype control.

(D and E) IFNg (D) and IL-12p70 (E) concentrations in tumor homogenates after adoptive transfer of 33 106 neutrophils once a week starting from the first day the

tumor was palpable. (D) and (E) are two independent experiments conducted 12 months apart.

(F) Incidence of 3-MCA induced sarcomas in Csf3r+/+ and Csf3r�/� mice treated with anti-iFNg antibody or with isotype control.

(A–E) Data are mean ± SEM. *p% 0.05, **p% 0.01, ***p% 0.001. (A) two-tailed multiple Student’s t tests. (B–E) One-way ANOVA. (F) Friedman test with Dunn’s

multiple comparison test.

See also Figure S2 and Table S1.
observed in monocytes and immature macrophages (Fig-

ure S2H). In G-CSF-R-incompetent mice, monocytes and

TAMs showed increased expression of the M2-associated

marker CD206 and decreased expression of the M1-associated

marker CD11c (Figures S2I–S2K), likely a reflection of defective

type 1 immunity (see below). Gene expression analysis on sorted

TAMs confirmed the increased expression of M2-like-related

genes (Murray et al., 2014), including Chil3, Tgfb1, and Msr1,

in Csf3r�/�-derived TAMs, while the expression of M1-related

geneswas either notmodulated or decreased (Figure S2L). Intra-

tumor vessel density was not altered in Csf3r�/� mice (Figures

S2M and S2N).

The G-CSF-R is expressed by monocytic lineage cells,

although to amuch lower extent compared to neutrophils (Chris-

topher et al., 2011). However, G-CSF did not affect macrophage

polarization by classical M1 or M2 signals (IFNg and IL-4), and if

anything, it skewed these cells in an M2-like direction (Figures

S2O–S2R).

Therefore, the M2-like phenotype found in Csf3r�/� TAMs is

due to the absence of neutrophil-dependent response and not

to lack of G-CSF-R signaling in the monocytic lineage.
348 Cell 178, 346–360, July 11, 2019
Neutrophils and Macrophages Cooperate to Promote an
IFNg-Dependent Antitumor Response
Macrophages obtained during 3-MCA carcinogenesis in G-CSF-

R-competent mice expressed IL-12 and those from Csf3r�/�

mice displayed reduced Il12a and Il12b mRNA expression (Fig-

ure 2A). These results raised the issue of the role of TAMs in

the increased susceptibility of Csf3r�/� mice to 3-MCA carcino-

genesis. As shown in Figures S2S and S2T, TAM depletion using

an anti-CSF-1R (CD115) monoclonal antibody (mAb) did not

rescue the phenotype of G-CSF-R-deficient mice, consistently

with an essential role of neutrophils. Interestingly, TAM depletion

increased carcinogenesis in G-CSF-R competent mice (Fig-

ure S2T) and drastically reduced the tissue levels of IL-12p70

and IFNg (Figures 2B and 2C). As shown in Figures 2B–2E and

Table S1, the increased sarcoma development observed in

Csf3r�/� neutrophil-deficient mice was associated with lower

levels of IL-12p70 and IFNg. Neutrophil adoptive transfer

restored the expression of IL-12p70 and IFNg in the TME of sar-

coma-bearingCsf3r�/�mice (Figures 2D and 2E). In vivo neutral-

ization of IFNg caused a dramatic increase of tumor incidence in

Csf3r+/+ mice as previously reported (Kaplan et al., 1998; Koebel
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Figure 3. Neutrophils Drive DNTab Type 1 Polarization

(A) Expression of IFNg by tumor-infiltrating T cells stimulated ex vivo by PMA plus ionomycin.

(B) Representative dot plot showing Rorgt, and T-bet expression in UTCab from Csf3r+/+ and Csf3r�/� tumors.

(C and D) Quantification of Eomes, Rorgt, and T-bet expression in UTCab from Csf3r+/+ and Csf3r�/� tumors (C) and in Csf3r�/� mice after adoptive transfer of

neutrophils (D).

(E) Expression of Eomes, Rorgt, and T-bet in UTCab infiltrating the 3-MCA injection site (10 days after administration of 3-MCA).

(F) Quantification of iNKT, MAIT, and DNTab frequencies among sarcoma-infiltrating CD45+ cells.

(G) Polarization of tumor-associated DNTab cells after neutrophil adoptive transfer.

(D and G) 33 106 neutrophils were transferred i.v. once a week starting from the first day the tumor was palpable. (E) 33 106 neutrophils were transferred i.v. at

days �1, 0, 1, and 9 with respect to 3-MCA administration. (A and C–G) Data are mean ± SEM. *p % 0.05, **p % 0.01, ***p % 0.001. (A, C, and F) Two-tailed

multiple Student’s t tests. (D) One-way ANOVA. (E and G) Kruskal-Wallis test with Dunn’s multiple comparison test.

See also Figures S3 and S4.
et al., 2007; Shankaran et al., 2001), but not inCsf3r�/�mice (Fig-

ure 2F), abolishing the difference in sarcoma susceptibility be-

tween Csf3r+/+ and Csf3r�/� control mice. These results indicate

that the protective effect exerted by neutrophils was dependent

on type 1 immunity and on the production of IFNg.

Neutrophils Are Essential for Type 1 Polarization of
Unconventional ab T Cells
Having established that IFNg played a key role in neutrophil-

mediated resistance to 3-MCA carcinogenesis, it was important

to identify the cellular source of this cytokine. Analysis of Ifng

mRNA indicated T cells as the major source of this cytokine in

the TME (Figure S3A). No difference was observed in IFNg pro-

duction in CD4+, CD8+, and gd T cells between Csf3r+/+ and

Csf3r�/� mice (Figure 3A). In contrast, the frequency of IFNg+

CD4� CD8� unconventional ab T cells (UTCab) was drastically

reduced (by 61.3% ± 11.4%; mean ± SEM in 2 experiments) in

Csf3r�/� tumors (Figure 3A). We then assessed the polarization

of tumor-infiltrating CD3+ T cell subsets by flow cytometry

(gating strategy in Figure S3B). UTCab from Csf3r�/� tumors dis-

played reduced expression of T-bet and Eomes and increased

expression of Rorgt, indicating a skewing toward a type 3 activa-

tion state (Figures 3B and 3C). A trend toward a skewed UTCab
polarization was also observed in the spleen of Csf3r�/� tu-

mor-bearing mice, although to a minor degree compared to

sarcoma-infiltrating cells (Figure S3C). gd T cells from Csf3r�/�

sarcomas showed increased Rorgt expression, while Eomes

and T-bet expression was not altered in this cell type (Fig-

ure S3D). Minor or no differences were observed in conventional

CD4+ T cells and CD8+ T cells (Figure S3D). Neutrophil adoptive

transfer reversed to a significant extent the polarization defect

observed in UTCab from Csf3r�/� tumors (Figure 3D). Increased

T-bet expression was also observed in gd T cells and CD8+

T cells (Figure S3E). IL-17A expression was significantly in-

creased inCsf3r�/�UTCab and gd T cells, in agreement with their

increased expression of Rorgt (Figure S3F). Natural killer (NK)

cells are known to be important IFNg producers (Vivier et al.,

2018) and have been shown to undergo a functional conversion

toward ILC1 during sarcoma progression (Gao et al., 2017), but

no difference was observed in abundance or maturation state

of the NK cell compartment in Csf3r�/� tumors (Figures S3G

and S3H).

Previous reports indicated that innate-like gd T lymphocytes,

represented an early source of IFNg during the 3-MCA-induced

sarcomagenesis (Gao et al., 2003). Here, the impaired type 1

activation state of UTCab was observed as early as 10 days after
Cell 178, 346–360, July 11, 2019 349



3-MCA injection, while little or no differences were observed in

the polarization of gd and CD4+ T cells (Figures 3E and S3I).

The frequency of UTCab, gd T cells, and conventional CD4+

T cells was not appreciably altered at the 3-MCA injection site

(Figure S3J). It should be noted that at early times (10 days after

3-MCA injection), CD8+ T cells were virtually absent (Figure S3J).

Bone marrow neutrophil transfer induced a complete rescue of

T-bet expression and partially reduced the expression of Rorgt

in Csf3r�/� UTCab present at the 3-MCA injection site, as early

as 10 days after 3-MCA administration, indicating that neutro-

phils are an essential component of UTCab polarization early in

3-MCA-induced sarcomagenesis (Figure 3E). In contrast, the po-

larization of other T cell subsets was not affected by neutrophil

transfer at early time points (Figure S3I).

Csf3r�/� UTCab expressed high levels of Plzf (Figures S4A and

S4B), a commonly expressed transcription factor in invariant nat-

ural killer T (iNKT) cells and mucosal-associated invariant T

(MAIT) cells (Koay et al., 2016; Kovalovsky et al., 2008). These

innate-like T cell subsets are also prevalently negative for CD4

andCD8 and can express Rorgt and T-bet (Cui et al., 2015; Engel

et al., 2016; Rahimpour et al., 2015). Dissection of intratumor

UTCab into MAIT, iNKT, and a third cell subset, referred to as ab

double negative T (DNTab) cells, showed the heterogeneity of

UTCab in 3-MCA-treated mice (Figures S4C and S4D). We found

increased frequencies of iNKT,MAIT, andDNTab cells inCsf3r
�/�

sarcomas, but only the polarization of DNTab cells was altered in

neutropenic mice (Figures 3F, 3G, S4E, and S4F). In the same

line, neutrophil adoptive transfer modulated the polarization of

DNTab cells but not iNKT and MAIT cells both at the early time

point (at the 3-MCA injection site, day 10) (Figures S4G–S4I)

and in established tumors (Figures 3G, S4E, and S4F). On day

10, the frequency of UTCab subsets was unaffected in Csf3r�/�

mice (Figure S4J). The presence and polarization of UTCab sub-

sets were not altered in the subcutaneous tissue of healthy

mice (Figures S4K–S4N). Altogether, these data showed that

neutrophils specifically regulated the polarization of DNTab cells

at early and late time points during carcinogenesis.

Neutrophil-Dependent IL-12 Production Is Essential for
IFNg Expression in UTCab

In an effort to better characterize the features of UTCab associ-

ated with neutrophil-sustained anti-sarcoma type 1 immunity,

bulk RNA-seq analysis of sorted sarcoma-infiltrating UTCab

was performed. 95 genes were differentially expressed between

Csf3r+/+ and Csf3r�/� UTCab (Figure 4A; Table S2). The expres-

sion of Il17a, Tbx21, Eomes, and Ifng genes in Csf3r�/� UTCab

was in line with data obtained by flow cytometry at the protein

level with decreased expression of T-bet, Eomes, and IFNg

and increased expression of IL-17A (Figures 3A–3C and S3F). In-

genuity pathway analysis (IPA) highlighted the upregulation of

pathways involved in inflammatory responses and neutrophil

recruitment and downregulation of the pathway of Th1 immune

response in Csf3r�/� UTCab (Figure S5A; Table S3). To identify

the signaling pathways specifically activated on cancer-associ-

ated UTCab, we compared the transcriptome of tumor-associ-

ated Csf3r+/+ UTCab with gd T cells and conventional CD4+ and

CD8+ T cells and found 190 differentially expressed genes (Fig-

ure S5B; Table S2). The Ifng mRNA levels detected in UTCab
350 Cell 178, 346–360, July 11, 2019
isolated from Csf3r+/+ sarcomas were comparable to that

expressed by CD8+ and gd T cells (Figure S5C), indicating the

significance of UTCab-derived IFNg in the TME.

Upstream regulator analysis predicted the increased activation

of STAT4, IL-18, and IL-12 pathways in tumor-associated UTCab,

compared to other T cell subsets (Figure S5D; Table S3). qPCR

performed on splenic T cell subsets from untreated mice

confirmed the higher expression of Il12rb1, Il12rb2, Il1r5, and

Il1r7 in UTCab compared to conventional T cells (Figures 4B and

4C). Accordingly, UTCab produced higher IFNg levels in response

to IL-12 plus IL-18 stimulation, compared to other T cell subsets

(Figure 4D). In vivo IL-12p70 neutralization skewed the polariza-

tion of Csf3r+/+ UTCab to a T-betlow phenotype (Figure 4E), while

no effect was observed in gd T cells (Figure S5E). Consistently,

signaling related to several type 1 cytokines in Csf3r�/� UTCab,

including IL-12, were predicted to be significantly inhibited

compared to Csf3r+/+ UTCab (Figure 4F; Table S3).

The results discussed above suggest that in 3-MCA carcino-

genesis neutrophils, in concert with macrophages, trigger a pro-

tective type 1 response involving IFNg-producing UTCab cells. In

an effort to explore the cellular basis for this tripartite interaction,

an in vitro coculture system was set up. For these studies,

spleen-isolated UTCab, which are composed by more than

85% of DNTab cells, were used (Figure S5F). In an in vitro cocul-

ture model, neutrophils dramatically amplified IL-12 production

by macrophages in response to triggering by cytokines and

TLR9 agonist (Figure 4G) or, to a lesser extent, STING agonist

(Figure S5G), which mimic conditions of tissue damage and

remodeling. Neutrophil-mediated amplification was contact-

dependent (Figure 4G). The amount of IL-12 produced in this

experimental setting was sufficient to trigger IFNg production

by UTCab but not by CD4
+ and CD8+ conventional T cell popula-

tions isolated from the spleen of untreated control mice (Fig-

ure 4H). Importantly, upon exposure to relevant cytokines,

sarcoma-infiltrating DNTab cells are the most potent producers

of IFNg compared to other T cell subsets (Figure 4I). Collectively,

these data suggest that the neutrophil-mediated maintenance of

UTCab type 1 polarization is driven by their higher sensitivity to IL-

12 compared with other T cell populations.

Single-Cell RNA-Seq Analysis of Tumor-
Infiltrating UTCab

To dissect the diversity of tumor-associated UTCab subsets,

scRNA-seq was performed on sorted sarcoma-infiltrating

UTCab, isolated from Csf3r+/+ (14,721 cells) and Csf3r�/�

(16,902 cells) tumors. scRNA-seq analysis revealed the tran-

scriptional complexity of the UTCab population. Unsupervised

clustering using Seurat methodology (Butler et al., 2018) allowed

the identification of 12 clusters (Figures 5A and 5B).

Each cluster was characterized by a specific gene signature,

associated to distinct effector functions, biological processes,

and activation states (Figures 5A and 5C; Table S4). Clusters

1–4 represented more than 75% of total UTCab and were differ-

entially enriched in Csf3r+/+ and Csf3r�/� sarcomas (Figures 5A

and 5B). In particular, clusters 1 and 3 were enriched in Csf3r�/�

sarcomas (Figures 5A and 5B) and displayed pronounced

expression of genes compatible with MAIT cell phenotype

(e.g., Cxcr6, Rorc, Icos, Zbtb16) (Koay et al., 2016; Rahimpour
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Figure 4. IL-12-Dependent Polarization and IFNg Production Is Impaired in Tumor-Infiltrating UTCab from Csf3r�/� Mice

(A) Heatmap showing differential transcriptional profiles of Csf3r+/+ and Csf3r�/� tumor-associated UTCab. Differentially expressed genes (p% 0.001) are shown

(arrows indicate genes associated with effector functions).

(B and C) mRNA expression of (B) Il12rb1 and Il12rb2 and (C) Il1r5 and Il1r7 in splenic T cell subsets isolated from untreated Csf3r+/+ mice.

(D) Expression of IFNg by splenic T cell subsets isolated from untreated Csf3r+/+ mice.

(E) Eomes, Rorgt, and T-bet expression in UTCab infiltrating the 3-MCA injection site after treatment with IL-12p70-neutralizing antibody or isotype control.

(F) Predicted upstream regulators in tumor-infiltrating Csf3r�/� UTCab compared with tumor-infiltrating Csf3r+/+ UTCab, generated by IPA analysis. Associated

p p value is shown for each regulator.

(G) IL-12p70 levels detected by ELISA in supernatants of BMDM-neutrophil cocultures after stimulation with GM-CSF+CpG.

(H) Expression of IFNg in naive splenic ab T cell subsets stimulated for 24 h with supernatants collected in (G) in the presence of IL-12p70-neutralizing antibody or

isotype control, assessed by flow cytometry.

(I) IFNg production from Csf3r+/+ sarcoma-infiltrating T cells upon stimulation with IL-2+IL-12+IL-18 for 24 h assessed by flow cytometry.

(B–I) Data aremean ±SEM. ***p% 0.001; **p% 0.01; *p% 0.05; ns, not statistically significant. (B–E and I) One-way ANOVA. (G andH) Two-tailed Student’s t test.

See also Figures S4 and S5 and Tables S2 and S3.
et al., 2015) (Figures 5C and 5D; Table S4) andwith the type 3 po-

larization state of Rorgt+ DNTab cells (i.e., Tmem176a-b, Il17a,

Rorc) (Figures 5C and 5D). On the other hand, clusters 2 and 4

were enriched inCsf3r+/+ sarcomas (Figures 5A and 5B) and pre-

sented high expression of effector molecules (i.e., Gzmb, Ifng,

Tbx21) compatible with the type 1 activation state of T-bet+
DNTab cells and genes related to Ly49 family (Klra1, Klra7,

Klra9) (Figures 5C and 5D). The relative frequencies of cell sub-

types obtained through flow cytometric analysis indicated a

complete quantitative overlap of Rorgt+ DNTab cells with cluster

1, MAIT cells with cluster 3, and T-bet+ DNTab cells with clusters

2 and 4 (Figures S5H–S5J). Cluster 5 displayed a gene signature
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related to iNKT cells (Table S4), in line with quantitative data from

flow cytometry analysis (Figure S5K). No expression ofCsf3rwas

detected in any Csf3r+/+ UTCab subset, thus excluding that lack

of G-CSF-R signaling in UTCab cells might impact on their polar-

ization and function (data not shown).

Correlation analysis performed on the whole transcriptome

highlighted the existence of twomain functionally distinct cluster

groups (Figure S6A), which mirrored the respective composition

of UTCab subsets in Csf3r+/+ and Csf3r�/� sarcomas. Gene set

variation analysis (GSVA) performed on differentially expressed

genes for each cluster showed the enrichment of IFNg signaling

and IL-12 signaling mediated by STAT4 in clusters enriched in

Csf3r+/+ sarcomas (clusters 2 and 4) (Figure S6B), in line with

data obtained by flow cytometry (Figure 3). Accordingly,

Il12rb2 expression was mainly confined to clusters 2 and 4 (Fig-

ure 5D), confirming their higher sensitivity to IL-12. These clus-

ters were also characterized by enrichment in gene signatures

associated with innate-like T cell activation and cytotoxic activity

(e.g., DAP12 signaling, TRAIL signaling, FasL signaling, and T

cytotoxic pathways) (Figure S6B).

To better characterize the 12 identified UTCab clusters and

their functional heterogeneity, we analyzed the gene expression

of molecules related to key biological pathways. In particular, we

assessed the enrichment of genes related to cell proliferation (Li

et al., 2019) (Figure S6C), cell migration (Zhang et al., 2018) (Fig-

ure S6D), costimulatory molecules and immune checkpoints

(�Sledzi�nska et al., 2015), and effector molecules (Guo et al.,

2018) (Figures S6E and S6F). Cluster 11 represented the only

subset in active proliferation (Figure S6C). Clusters 1 and 3

were characterized by the expression of a specific set of immune

checkpoints (i.e., Icos, Sigirr, and Vsir) and chemokine receptors

(i.e., Cxcr6, Ccr1, and Ccr4). On the other hand, clusters 2 and 4

expressed several effector molecules (i.e., Gzmb, Gzmd, and

Prf1) and a different set of chemokine receptors and costimula-

tory molecules, including Cxcr3, Ccrl2, and Cd28 (Figures S6D–

S6F). Among the other UTCab subsets, cluster 12 expressed

genes related to functionally active, terminally differentiated

T cells (i.e., Gzmk, Gzma, S1pr5, Cx3cr1, and Pdcd1) (Figures

S6D–S6F), while cluster 9 was characterized by the expression

of migratory molecules typical of naive T cells such as S1pr1,

Ccr7, and Sell (Figure S6D).

Importantly, clusters 2 and 4 showed a specific enrichment of

NK cell-related genes, in particular those included in the Ly49

(Klra) and NKG2 (Klrc) receptor families (Figure 5E). We validated
Figure 5. scRNA-Seq Analysis of Tumor-Infiltrating UTCab

(A) t-Distributed stochastic neighbor embedding (t-SNE) projection showing Seura

2Csf3r+/+ (14,721 cells) and 2Csf3r�/� (16,902 cells) sarcomas (see STARMethod

(left) or according to Csf3r+/+ and Csf3r�/� conditions (right).

(B) Bar graph showing the relative abundance of each cluster in Csf3r+/+ and Cs

(C) Heatmap showing the top 10 differentially expressed genes in clusters 1–1

expression, red indicates higher expression. Expression scale is shown on the ri

(D) t-SNE projections showing the relative distribution of selected genes inCsf3r+

(E) Heatmap showing the expression of NK cell-related genes in sarcoma-infiltrati

dotted blue line highlights the enrichment of NK cell-related genes in clusters 2 a

(F) Expression of NK cell-related molecules on Csf3r+/+ sarcoma-infiltrating T ce

(G) Representative histograms of the analysis shown in (F).

(F) Data are mean ± SEM. ***p % 0.001. One-way ANOVA.

See also Figures S5 and S6 and Table S4.
these findings by flow cytometry on sarcoma-infiltrating Csf3r+/+

T cells (Figures 5F and 5G).

Indeed, tumor-associated DNTab cells displayed a unique set

of Ly49 molecules (Figures 5F and 5G) and expressed higher

levels of CD94 and NKG2ACE compared to any other T cell sub-

set (Figures 5F and 5G).

A Monocle-guided transcriptional trajectory identified five

different functional states ordered along an artificial pseudotime,

in which the 12UTCab clusters were differentially distributed (Fig-

ures 6A and 6B). The trajectory was defined by a gene set that

included molecules related to T cell polarization (i.e., Tbx21

and Rorc), effector functions (i.e., Gzmb, Ifng, and Il17a), and

activation state (i.e., Nr4a1,3) (Figure S6G; Table S5). Interest-

ingly, type 3 polarized cells (clusters 1 and 3) and type 1 polarized

cells (clusters 2 and 4) were positioned at the opposite ends of

the trajectory and represent the extremes in a spectrum of func-

tional states (Figures 6A and S6G; Table S5). Importantly, the

expression of several Klra genes was dynamically regulated dur-

ing the trajectory and was higher in state 5 (Figures 6C and S6G).

A previously validated splenic NK cell gene signature (Crinier

et al., 2018) was significantly enriched in cells pertaining to state

5 (clusters 2 and 4), thus confirming their innate-like phenotype

(Figure 6D). Notably, splenic DNTab cells from untreated mice

showed an array of receptors analogous to that observed in tu-

mor-infiltrating DNTab cells (Figures 6E and 6F), suggesting

that the spleen might represent a Ly49+ DNTab cell reservoir.

Thus, these results provide insight into the diversity of tumor-

associated UTCab at a single-cell level and highlight a subset

of Ly49R-expressing UTCab (i.e., DNTab in clusters 2 and 4)

with type 1 polarization and potential antitumor activity.

In an effort to obtain an indication as to the actual antitumor

potential of DNTab cells, we conducted an in vivo cotransfer

model in two transplantable murine sarcoma models (MN-

MCA1 and FS6) (Bonavita et al., 2015). At low DNTab/tumor

cell ratios (1:5 and 1:20), DNTab cells significantly reduced tumor

growth (Figure 6G and 6H). Thus, DNTab cells can indeed

mediate antitumor resistance in vivo.

Neutrophil Infiltration Is Associated with Better
Prognosis and Type 1 Immunity in Selected Human
Tumors
The results reported above identify a novel neutrophil-orches-

trated pathway of effective type 1 immunity against sarcoma-

genesis. It was therefore important to explore its significance in
t-guided unsupervised clustering and distribution of 31,623UTCab pooled from

s). Each point represents a single-cell colored according to cluster designation

f3r�/� sarcomas, colored according to cluster designation.

2. For each cluster, the average expression is plotted. Blue indicates lower

ght.
/+ and Csf3r�/� UTCab cells. The position of clusters 1, 2, 3, and 4 are indicated.

ng UTCab cells. Clustering is based on their cluster-specific gene expression. A

nd 4.

ll subsets as assessed by flow cytometry.
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human disease. Human soft tissue sarcomas (STS) are a hetero-

geneous and complex set of neoplasias in terms of genetic ab-

normalities and clinical behavior, responsible for �5,000 deaths

per year in the United States (American Cancer Society, 2017;

Taylor et al., 2011). We interrogated the RNA-seq The Cancer

Genome Atlas (TCGA) database and found that in undifferenti-

ated UPS a type 1 immune response gene signature and IFN,

were associated with favorable outcome (Figures 7A and 7B;

Table S6). Moreover, CSF3R expression was also associated

with better outcome in terms of overall survival in UPS patients

(Figure 7C). Using a previously validated neutrophil-specific

gene signature (Bindea et al., 2013; Chao et al., 2016) (31 genes,

listed in Table S6), UPS patients were divided into TANhigh and

TANlow subgroups. The resulting Kaplan-Meier curve showed

that patients with TANhigh tumor biopsies at diagnosis had a sig-

nificant survival advantage compared to TANlow patients and a

trend was observed for recurrence-free survival (hazard ratio

[HR] 0.28; 95% confidence interval [CI] 0.07–1.16) (Figures 7D

and S7A). Interestingly, high CSF3R expression was associated

with a type 1 immunity signature and with IFNG expression (Fig-

ures 7E and 7F). No association was observed between CSF3R,

neutrophil signature, IFNG, or type 1 immune signature and

outcome in other sarcomas (i.e., dedifferentiated liposarcoma,

leiomyosarcoma and myxofibrosarcoma) (Figures S7B–S7M).

TAN infiltration in human UPS tumor specimens was validated

by immunohistochemistry for CD66b in a separate cohort of

19 UPS patients followed at Humanitas Clinical and Research

Center (Figure 7G; Table S7). The mean number of neutrophil

infiltration ranged from 1 to 17 cells per field (Figure 7G). Recur-

rence-free survival was higher in CD66bhigh UPS patients (Fig-

ure 7H). Interestingly UPS, which accounts for 14% of total

STS (Brennan et al., 2014), has been suggested to be the coun-

terpart of 3-MCA-induced sarcomas (Katenkamp et al., 1988; Li

et al., 2010).

We extended our analysis to other human cancer datasets and

found a significantly positive correlation between the neutro-

philic infiltrate, IFNG expression, a type 1 immune response

gene signature and better prognosis in colorectal cancer (CRC)

(Figures 7I–7L). Moreover, CSF3R was positively correlated

with IFNG expression (Figure 7M), suggesting that the neutro-

phil-IFNg axis might be relevant in selected human tumors.

Interestingly, high neutrophil infiltration assessed by immunohis-

tochemistry has previously been associated with better outcome
Figure 6. Ly49+ DNTab Cells Display an Innate-like Phenotype and Ant

(A) Monocle-guided cell trajectory orders five transcriptional states along an a

dark blue.

(B) Analysis of UTCab distribution along the transcriptional states described in (A).

states. Clusters are ordered according to their calculated pseudotime mean sco

(C) Representation of Klra gene expression plotted as a function of pseudotime.

(D) Violin plots showing the enrichment of a splenic NK cell gene signature describ

analysis. Mean Z score was calculated for each cell. Statistical significance was

(E) Expression of NK cell-related molecules on splenic Csf3r+/+ T cell subsets iso

(F) Representative histograms of the analysis shown in (D).

(G andH) In vivo cotransfer assay was performedwith sorted DNTab cotransferred

with either 2 3 106 FS6 cells (G) or 5 3 105 MN-MCA1 cells (H).

(E) Data are mean ± SEM or (G and H) mean ± SD. *p% 0.05, **p% 0.01, ***p% 0

comparison test.

See also Figures S5, S6, and S7.
in CRC in five independent reports (Berry et al., 2017; Bindea

et al., 2013; Galdiero et al., 2016; Governa et al., 2017; Wikberg

et al., 2017). These results suggest that, mirroring findings in

3-MCA carcinogenesis, a neutrophil-type 1 immunity axis may

play a role in resistance against selected human tumors (Figures

7 and S7N–S7W), in particular UPS and CRC.

DISCUSSION

Evidence based on antibody-mediated depletion and on clinical

associations suggests that neutrophils can exert a dual influence

on carcinogenesis, progression to metastasis and response to

therapy (Coffelt et al., 2016; Engblom et al., 2017; Fridlender

et al., 2009; Galdiero et al., 2016; Granot et al., 2011; Massara

et al., 2018; Wculek and Malanchi, 2015). Here, we provide un-

equivocal genetic evidence based on Csf3r deficiency, sup-

ported by antibody-dependent depletion and adoptive cell

transfer, that neutrophils are essential for mounting an effective

type 1 IFNg-dependent immune response, which restrains

3-MCA sarcomagenesis.

T cells and IFNg have long been known to mediate resistance

against 3-MCA-driven carcinogenesis (Kaplan et al., 1998; Koe-

bel et al., 2007; Shankaran et al., 2001). Here, we report that

neutrophil deficiency was associated with a selective functional

skewing of UTCab cells with no discernable impact on the polar-

ization state of other T cell subsets. It remains unclear whether

the enhanced carcinogenesis observed in Csf3r�/� neutrophil-

deficient mice is only a reflection of defective IFNg production,

increased skewing to a type 3 IL-17 response, or a combination

of the two. The discovery of a neutrophil/UTCab axis, relevant to

the control of mesenchymal carcinogenesis, raises the general

issue of the relevance of innate-like UTCab cells in cancer.

The neutrophil-dependent pathway of resistance to sarcoma

induction by 3-MCA involved IL-12 produced by macrophages.

In an in vitro coculture model, neutrophils dramatically amplified

macrophage-derived IL-12 release, which was sufficient to

trigger IFNg production by UTCab but not by CD4+ or CD8+

T cells. This finding is reminiscent of a previously reported innate

lymphoid cell subset, characterized by a unique capacity to pro-

duce IFNg in response to IL-12 (Fuchs et al., 2013). Thus, in

3-MCA sarcomagenesis a tripartite interaction involving neutro-

phils, macrophages, and UTCab is an essential component of

type 1 immune resistance.
itumor Activity In Vivo

rtificial pseudotime. Pseudotime is shown colored in a gradient from light to

Bar graphs represent the frequency of cells belonging to each cluster in the five

re (from low to high pseudotime).

ed in (Crinier et al., 2018) in the five transcriptional states identified by Monocle

calculated comparing state 5 with every other state.

lated from untreated mice, assessed by flow cytometry.

with two sarcoma cell lines. 105 DNTabwere co-injected (subcutaneously [s.c.])

.001. (D and E) One-way ANOVA. (G and H) Friedman test with Dunn’s multiple
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scRNA-seq analysis showed that tumor infiltrating UTCabwere

highly heterogeneous. Twelve clusters were identified, and four

of them represented over 75% of the total UTCab pool. These

clusters included cells with molecular signatures of MAIT cells.

Csf3r deficiency was associated with selective depletion of

DNTab cells belonging to clusters 2 and 4, characterized by a

gene expression repertoire indicative of antitumor effector func-

tion. These cells expressed several NK cell-related molecules,

such as Ly49 inhibitory receptors as well as CD94/NKG2A inhib-

itory complex. Ly49+ DNTab cells were present in the spleen of

untreatedmice andwere able tomediate antitumor activity in vivo

suggesting that the spleen might represent a reservoir of Ly49+

DNTab cells endowed with antitumor potential. Interestingly,

the targets of current checkpoint blockade therapies PD-1 and

CTLA-4 were not prominently expressed by these cells. Thus,

the present results suggest that in tumors in which there is evi-

dence for a neutrophil/IFNg resistance pathway, targeting DNTab
cell inhibitory receptors should be considered as an alternative

or complementary strategy. These results highlight for the first

time the presence, diversity, and antitumor potential of UTCab

in the TME and suggest that neutrophils can sustain the anti-

tumor potential of Ly49+ DNTab cells.

A type 1 immune response signature, IFNG, CSF3R, and a

neutrophil signature were associated with better survival in

selected human tumors, including UPS and CRC (Figures 7

and S7N–S7W). The finding of neutrophil infiltration being asso-

ciated with better outcome based on in silico analyses of public

databases was consistent with data obtained by immunohisto-

chemistry for UPS in the present report (Figures 7G and 7H)

and for CRC in five independent previous studies with large

case lists (Berry et al., 2017; Bindea et al., 2013; Galdiero

et al., 2016; Governa et al., 2017; Wikberg et al., 2017). These re-

sults strongly suggest that the neutrophil-dependent pathway of

antitumor resistance described in 3-MCA carcinogenesis is

indeed relevant in selected human tumors. This neutrophil-type

1 immunity axis may have broader significance in neoplastic

and non-neoplastic conditions.

The results reported here emphasize the diversity of mecha-

nisms of immune resistance in human tumors, even when histo-
Figure 7. Neutrophils Are Associated With Better Prognosis and Type

Cancer

(A) Kaplan-Meier survival curve of UPS patients from TCGA cohort with respect

specimens.

(B) Kaplan-Meier survival curve of UPS patients from TCGA cohort with high or l

(C and D) Kaplan-Meier survival curves of UPS patients from TCGA cohort with h

tumor specimens.

(E and F) Relative expression of type 1 gene signature (E) and IFNG (F) in tumor sa

according to their high or low expression of CSF3R.

(G) Example of high and low neutrophil infiltration in human UPS assessed by histo

Clinical and Research Center stained with anti-CD66b antibody.

(H) Kaplan-Meier curve shows recurrence-free survival for UPS patients from Hu

(CD66bhigh and CD66blow assessed by immunohistochemistry).

(I–L) Kaplan-Meier survival curves of CRC patients stratified according to their

expression.

(M) Pearson correlation between CSF3R and IFNG expression in CRC patients.

(A–D and H–M) Numbers depicted in each graph represent the total number of p

(E and F) Boxes: 25–75 range; whiskers: 10–90 range. (E and F) ***p % 0.001. (A

U-test; HR, hazard ratio; CI, 95% confidence interval. (M) Pearson correlation.

See also Figure S7 and Tables S6 and S7.
logically related, and call for tailoring of immunotherapy strate-

gies and correlate biomarkers, including neutrophil-related

ones, to the diversity of immune pathways. Moreover, the occur-

rence and significance of UTCab in the TME may have been

underestimated.
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Antibodies and tetramers

CD103-PerCPeF710 (2E7) eBioscience Cat # 46103182; RRID:AB_2573704

CD11b-BV421 (M1/70) BioLegend Cat # 101236; RRID: AB_11203704

CD11b-BV480 (M1/70) BD Biosciences Cat # 5666117; RRID:AB_2739519

CD11b-BV786 (M1/70) BioLegend Cat # 101243; RRID:AB_2561373

CD11b-APCCy7 (M1/70) BD Biosciences Cat # 557657; RRID:AB_396772

CD11b-FITC (M1/70) BioLegend Cat # 101206; RRID:AB_312789

CD11c-PE (HL3) BD Biosciences Cat # 553802; RRID:AB_395061

CD11c-AlexaFluor700 (HL3) BD Biosciences Cat # 560583; RRID:AB_1727421

CD19-PE (1D3) BD Biosciences Cat # 553786; RRID:AB_395050

CD19-PerCPCy5.5 (1D3) BD Biosciences Cat # 551001; RRID:AB_394004
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CD4-AlexaFluor 700 (RM4-5) BD Biosciences Cat # 557956; RRID:AB_396956

CD4-FITC (H129.19) BioLegend Cat # 130308; RRID:AB_1279237

CD45-BV605 (30-F11) BD Biosciences Cat # 563053; RRID:AB_2737976

CD45-BV650 (30-F11) BD Biosciences Cat # 563410; RRID:AB_2738189

CD45-PerCP-Cy5.5 (30-F11) eBioscience Cat # 45045182; RRID:AB_1107002

CD45.2-BUV805 (104) BD Biosciences Cat # 741957; RRID: NA

CD49a-BV711 (Ha31/8) BD Biosciences Cat # 564863; RRID:AB_2738987

CD49b-APC (DX5) eBioscience Cat # 17597182; RRID:AB_469485

CD54-PE (YN1/1.7.4) BioLegend Cat # 116108; RRID:AB_313699

CD62L-APC (MEL-14) BD Biosciences Cat # 553152; RRID:AB_398533

CD62L-BV570 (MEL-14) BioLegend Cat # 104433; RRID:AB_10900262

CD64-PE (X54-5/7.1) BioLegend Cat # 139304; RRID:AB_10612740

CD86-eFluor450 (GL-1) eBioscience Cat # 48086280; RRID:AB_2574030

CD8a-BV480 (53-6.7) BD Biosciences Cat # 566096; RRID:AB_2739566

CD8a-BV570(53-6.7) BioLegend Cat # 100740; RRID:AB_2563055

CD8a-PE (53-6.7) Invitrogen Cat # 12008182; RRID:AB_465530

CD94-BV650 (18d3) BD Biosciences Cat # 740551; RRID:AB_2740252

F4/80-PECy7 (BM8) BioLegend Cat # 123114; RRID:AB_893478

KLRG1-BV786 (2F1) BD Biosciences Cat # 565477; RRID:AB_2739256

Ly49A-BUV395 (A1) BD Biosciences Cat # 742370; RRID:AB_2740728

Ly49C-BV605 (5E6) BD Biosciences Cat # 744029; RRID:AB_2741939

Ly49F-BV421 (HBF-719) BD Biosciences Cat # 744777; RRID:AB_2742475

Ly49G2-BV480 (4D11) BD Biosciences Cat # 746794; RRID:AB_2741127

Ly6C-BV421 (AL21) BD Biosciences Cat # 562727; RRID:AB_2737748

Ly6C-FITC (AL21) BD Biosciences Cat # 561085; RRID:AB_10584332

Ly6G-BUV395 (1A8) BD Biosciences Cat # 563978; RRID:AB_2716852
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Ly6G-PECF594 (1A8) BD Biosciences Cat # 562700; RRID:AB_2737730

MHCII-BV711 (2G9) BD Biosciences Cat # 743874; RRID:AB_2741825

MHCII-FITC (2G9) BD Biosciences Cat # 553623; RRID:AB_394958

MHCII-PerCP (M5/114.15.2) BD Biosciences Cat # 562363; RRID:AB_562363

NK1.1-PE (PK136) eBioscience Cat # 12594182; RRID:AB_466050

NK1.1-APC (PK136) eBioscience Cat # 17594182; RRID:AB_469479

NK1.1-BV650 (PK136) BD Biosciences Cat # 564143; RRID:AB_564143

NK1.1-PECF594 (PK136) BD Biosciences Cat # 562864; RRID:AB_2737850

NKG2A/C/E-BUV563 (18d3) BD Biosciences Cat # 741339; RRID:AB_741339

NKp46-BV421 (29A1.4) BioLegend Cat # 137612; RRID:AB_2563104

TCRb-BV711 (H57-597) BD Biosciences Cat # 563135; RRID:AB_2738023

TCRgd-BV421 (GL3) BD Biosciences Cat # 562892; RRID:AB_2737871

TCRgd-PerCPeFluor710 (GL3) eBioscience Cat # 46571182; RRID:AB_2016707

Eomes-AlexaFluor488 (Dan11Mag) eBioscience Cat # 53487582; RRID:AB_10854265

IFNg-AlexaFluor700 (XMG1.2) BD Biosciences Cat # 557998; RRID:AB_396979

IFNg-BV421 (XMG1.2) BD Biosciences Cat # 563376; RRID:AB_2744290

PLZF-AlexaFluor647 (R17-809) BD Biosciences Cat # 563490; RRID:AB_563490

RORgT-PECF594 (Q31-378) BD Biosciences Cat # 562684; RRID:AB_2651150

Tbet-PE (O4-46) BD Biosciences Cat # 561268; RRID:AB_10564071

Tbet-BV780 (O4-46) BD Biosciences Cat # 564141; RRID:AB_2738615

aGalCer-CD1d-APC ProImmune Cat # E001-4B-E; RRID:NA

5-OP-RU-MR1-BV421 James McCluskey,

University of Melbourne

N/A

5-OP-RU-MR1-PE James McCluskey,

University of Melbourne

N/A

Rat anti-Ly6G (1A8) BioXCell Cat # BP0075-1; RRID:AB_1107721

Rat anti-iFNg (XMG1.2) BioXCell Cat # BE0055; RRID:AB_1107694

Rat anti-iL-12p75 (R2-9A5) BioXCell Cat # BE0233; RRID:AB_2687715

Rat anti-CD115 (AFS98) BioXCell Cat # BE0213; RRID:AB_2687699

Rat Isotype Control (2A3) BioXCell Cat # BE0089; RRID:AB_1107769

Rat Isotype Control (LTF-2) BioXCell Cat # BE0090; RRID:AB_1107780

Rat Isotype Control (HRPN) BioXCell Cat # BE0088; RRID:AB_1107775

Rat Anti-mouse CD31 (MEC13.3) BD Bioscences Cat # 553370; RRID:AB_394816

Mouse Anti-human CD66b (G10F5) BD Bioscences Cat # 555723; RRID:AB_396066

Biological Samples

Surgical Samples from UPS patients Humanitas Clinical&

Research Hospital

N/A

Chemicals, Peptides, and Recombinant Proteins

3-Methylcolanthrene Sigma Aldrich Cat # 213942

Recombinant mouse GM-CSF Peprotech Cat # 315-03

Recombinant mouse G-CSF Peprotech Cat # 250-05

Recombinant mouse M-CSF Peprotech Cat # 315-02

Recombinant mouse IFNg Peprotech Cat # 315-05

Recombinant mouse IL-4 Peprotech Cat # 214-14

Recombinant mouse IL-12 Peprotech Cat # 210-12

Recombinant human/mouse IL18 MBL Cat # B001-5

Proleukin, IL-2 Novartis N/A

ODN 1826 Murine TLR9 Ligand (CpG) InvivoGen Cat # Tlrl-1826

cAIMP Difluor InvivoGen Cat # Tlrl-nacaidf
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Collagenase from Clostridium Histolyticum Sigma Aldrich Cat # C5138

Liberase TM Roche Cat # 541119001

DNase I Roche Cat # 4536282001

Critical Commercial Assays

Live/Dead fixable Dye Aqua Cell Dead stain kit, 405nm Invitrogen Cat # L34957

Live/Dead fixable Dye eFluor780 eBioscience Cat # 65-0865-18

Foxp3 Staining Buffer Set eBioscience Cat # 00-5523-00

BD GolgiPlug BD Biosciences Cat # 555029

Cell Stimulation Cocktail eBioscience Cat # 00-4970-03

CD16/CD32 FcBlock (24G2) eBioscience Cat # 16016185

Rat Serum eBioscience Cat # 24555594

Click-iT EdU AlexaFluor 647 Flow Cytometry Assay Kit Invitrogen Cat # C10419

PrimeFlow RNA Assay Kit Thermo Fisher Cat # 88-18005-210

Mus musculus Il12b (RUO) Probe Thermo Fisher Cat # VB4-20451

Mus musculus Il12a (RUO) Probe Thermo Fisher Cat # VB1-12422

Mus musculus Actb (RUO) Probe Thermo Fisher Cat # VB1-10350

Chromium Single Cell 30 Library and Gel Bead

Kit v2, 4 rxns

10X Genomics Cat # FC5120267

Chromium Single Cell A Chip Kit, 16 rxns 10X Genomics Cat # FC51000009

NSQ500/550 Hi Output KT v2.5 (75CYS) Illumina Cat # 20024906

NSQ 500 hi-Output RGT CART v2 (75CYS) Illumina Cat # 15057934

NextSeq High Output Flow Cell v2.5 Illumina Cat # 20022408

NextSeq 500/550 Buffer Cartridge v2 Illumina Cat # 15057941

NextSeq Accessory Box v2 Illumina Cat # 15058251

Neutrophil Isolation Kit, mouse Miltenyi Biotec Cat # 130-097-658

Pan T cell Isolation Kit II, mouse Miltenyi Biotec Cat # 130-095-130

CD45 (TIL) MicroBeads, mouse Miltenyi Biotec Cat # 130-110-618

CD4+/CD8+ (TIL) Microbeads, mouse Miltenyi Biotec Cat # 130-116-480

CD11b+ Microbeads, human and mouse Miltenyi Biotec Cat # 130-049-601

RNeasy MinElute Cleanup Kit QIAGEN Cat # 74204

Maxwell� 16 LEV simplyRNA Cell Kit Promega Cat # AS1270

High-Capacity cDNA Reverse Transcription Kit Applied Biosystems Cat # 4368814

SYBRTM Green PCR Master Mix Applied Biosystems Cat # 4309155

Deposited Data

Raw and processed bulk RNaseq data NCBI GEO GSE109031

Raw and processed single cell RNaseq data NCBI GEO GSE123508

Experimental Models: Cell Lines

MN-MCA1 Molgora et al., 2017

Bonavita et al., 2015

N/A

FS6 Mantovani et al.,1977 N/A

Experimental Models: Organisms/Strains

Csf3r�/� Jackson Laboratory Cat # 017838

C57BL/6J Jackson Laboratory Cat # 000664

Oligonucleotides

Retnla (Fizz1): forward 50-CCC TTC TCA TCT GCA TCT

CC-30 reverse 50-CTG GAT TGG CAA GAA GTT CC-30
This Paper N/A

Chil3 (Ym1): forward 50-TCT GGG TAC AAG ATC

CCT GAA-30 reverse 50-TTT CTC CAG TGT AGC

CAT CCT T-30

This Paper N/A

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Ccl5: forward 50-TGC AGA GGA CTC TGA GAC

AGC-30 reverse 50-GAG TGG TGT CCG AGC CAT A-30
This Paper N/A

Nos2: forward 50-GCC ACC AAC AAT GGC AAT A-30

reverse 50-CGT ACC GGA TGA GCT GTG AAT T-30
This Paper N/A

Ccl2: forward 50- ATT GGG ATC ATC TTG CTG GT-30

reverse 50- CCT GCT GTT CAC AGT TGC C-30
This Paper N/A

Arg1: forward 50- TTT TTC CAG CAG ACC AGC TT-30

reverse 50- AGA GAT TAT CGG AGC GCC TT-30
This Paper N/A

Tgfb1: forward 50-CAA CCC AGG TCC TTC CTA AA-30

reverse 50- GGA GAG CCC TGG ATA CCA AC-30
This Paper N/A

Il27p28: forward 50- AGC TCT TGA AGG CTC AGG

G-30 reverse 50- GTG ACA GGA GAC CTT GGC TG-30
This Paper N/A

Ifng: forward 50-TCA AGT GGC ATA GAT GTG GAA

GAA-30 reverse 50-TGG CTC TGC AGG ATT TTC

ATG-30

This Paper N/A

Il10: forward 50-GGT TGC CAA GCC TTA TCG GA-30

reverse 50-ACC TGC TCC ACT GCC TTG CT-30
This Paper N/A

Stab1: forward 50-CCC TCC TTC TGC TCT GTG TC-30

reverse 50- CAA ACT TGG TGT GGA TGT CG-30
This Paper N/A

Mrc1: forward 50-TGG CAT GTC CTG GAA TGA T-30

reverse 50-CAG GTG TGG GCT CAG GTA GT-30
This Paper N/A

Msr1: forward 50-TGC CCT CAT TGC TCT CTA CC-30

reverse 50- TTC ATT TCC CAA TTC AAA AGC TC-30
This Paper N/A

Il4ra: forward 50- GTG GAG CCT GAA CTC GCA-30

reverse 50-AAG CAC GCA GAT CCA AAA TC-30
This Paper N/A

Marco: forward 50-TTC TGT CGC ATG CTC GGT TA-30

reverse 50-CAG ATG TTC CCA GAG CCA CC-30
This Paper N/A

Met: forward 50-TGT CCG ATA CTC GTC ACT GC-30

reverse 50-CAT TTT TAC GGA CCC AAC CA-30
This Paper N/A

Il1b: forward 50- GGT CAA AGG TTT GGA AGC AG-30

reverse 50- TGT GAA ATG CCA CCT TTT GA-30
This Paper N/A

Ccl3: forward 50- GTGGAATCTTCCGGCTGTAG-30

reverse 50- ACCATGACACTCTGCAACCA-30
This Paper N/A

Cxcl10: forward 50-CCG TCA TTT TCT CCC TCA

TCC-30 reverse 50- CCC TAT GGC TGC TTC ACT

CTC A-30

This Paper N/A

Il23a: forward 50-AGC ATT TAT GCT TCC AAA GC-30

reverse 50-GGA GGT CTC AAG TTC CTA CAT G-30
This Paper N/A

Ccr3: forward 50-TGA AAC TGT GAT CTT GGG ACA-30

reverse 50-CAG CAT CAA CAA CAC GTT CC-30
This Paper N/A

Il1r5: forward 50-GAT GCA TGT TTA GGC TTC CA-30

reverse 50-TCT TCT GCT GTC TGG AGC AA-30
This Paper N/A

Il1r7: forward 50-AGA GTG CAG AGA GGC AAA CC-30

reverse 50-TGA AAC CCT CTT CCT CCA GA-30
This Paper N/A

Il12rb1: forward 50- GCA GCC GAG TGA TGT ACA

AG-30 reverse 50- GAG ACG CGA AAA TGA TGG AT-3

This Paper N/A

Il12rb2: forward 50- AAC ACC AGA GGA AGA GCC

TG-30 reverse 50- CGT CAC CTG ATA GTG GAG GA-30
This Paper N/A

Gapdh/GAPDH: forward 50-GCA AAG TGG AGA TTG

TTG CCA T-30 reverse 50-CCT TGA CTG TGC CGT

TGA ATT T-30

This Paper N/A

Software and Algorithms

FlowJo v9.3 FlowJo https://www.flowjo.com/solutions/flowjo/downloads

Prism v7 GraphPad https://www.graphpad.com

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

FastQC (v.0.11.6) FastQC http://www.bioinformatics.babraham.ac.uk/projects/

fastqc

STAR (v.020201) Dobin et al., 2013 https://github.com/alexdobin/STAR

edgeR (v.3.24.1) Robinson et al., 2010 http://bioconductor.org/packages/release/bioc/html/

edgeR.html

CellRanger (v.2.1.1) 10X Genomics https://support.10xgenomics.com/single-cell-gene-

expression/software/pipelines/latest/what-is-cell-

ranger

Seurat (v.2.3.4) Butler et al., 2018 https://satijalab.org/seurat/

Monocle (v.2.8.0) Trapnell et al., 2014;

Qiu et al., 2017

http://cole-trapnell-lab.github.io/monocle-release/
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Alberto

Mantovani (alberto.mantovani@humanitasresearch.it) or to Sebastien Jaillon (sebastien.jaillon@humanitasresearch.it).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animals
All mice used were on a C57BL/6J genetic background. Csf3r-deficient mice were purchased from the Jackson Laboratory, Bar

Harbour, Maine, US. All colonies were housed and bred in the SPF animal facility of Humanitas Clinical and Research Center in indi-

vidually ventilated cages. Mice were randomized based on age and weight.

Procedures involving animals handling and care were conformed to protocols approved by the Humanitas Clinical and Research

Center (Rozzano, Milan, Italy) in compliance with national (D.L. N.116, G.U., suppl. 40, 18-2-1992 and N. 26, G.U. March 4, 2014) and

international law and policies (EECCouncil Directive 2010/63/EU, OJ L 276/33, 22-09-2010; National Institutes of Health Guide for the

Care and Use of Laboratory Animals, US National Research Council, 2011). The study was approved by the Italian Ministry of Health

(approvals n. 334/2013-B, issued on 27/12/2013 and n. 261/2017-PR issued on 28/03/2017). All efforts were made to minimize the

number of animals used and their suffering. Inmost in vivo experiments, the investigators were unaware of the genotype of the exper-

imental groups.

Carcinogen-induced sarcoma model
Male mice were injected s.c. with a single dose of 100 mg of 3-MCA (Sigma-Aldrich, St Louis, US) dissolved in corn oil and assessed

for tumor development over the course of 5 months. Data are shown as tumor incidence and tumor volume according to the formula:

Volume = (Dxd2)/2, where D = larger tumor diameter and d = smaller tumor diameter, during the entire duration of the experiment

using a calliper. In neutrophil adoptive transfer experiments, tumor growth is expressed over time (days) after the first palpable tumor

observation (V = 4 mm3). In cohousing experiments, Csf3r+/+ and Csf3r�/� male mice were cohoused in a 1:1 ratio from birth until

8 weeks of age, and then injected with 3-MCA.

Depletion and blocking experiments
For neutrophil and IFNg depletions, mice were intraperitoneally (i.p.) treated with 200 mg of specific mAbs (Rat anti-Ly6G, Clone 1A8;

Rat Isotype Control Clone 2A3; Rat anti-iFNg, Clone XMG1.2; Rat Isotype Control, Clone HRPN) on the day before 3-MCA admin-

istration, and with 100 mg twice a week for the entire duration of the experiment. In IL-12p75 depletion experiments, mice were i.p.

treated with 1 mg of Rat anti-iL-12p75 (Clone R2-9A5; Rat Isotype Control, Clone LTF-2) on the day before 3-MCA administration,

and with 500 mg on days +1 and +6 after 3-MCA administration. For M-CSFR blockade experiments mice were i.p. treated as pre-

viously shown (Hashimoto et al., 2011) with 1.5 mg of Rat anti-CD115 (Clone AFS98; Rat Isotype Control, Clone 2A3) on the day

before 3-MCA administration, and with 300 mg twice a week after 3-MCA administration until mice reached experimental endpoint.

In a second set of experiment, mice were i.p. treated with 1.5 mg on the day before 3-MCA administration and with 300 mg on days

0, +3 and +7 after 3-MCA administration. All depleting antibodies were purchased from Bioxcell (West Lebanon, US).

Neutrophil adoptive transfer
In a first set of experiments, 3x106MACS-enriched bonemarrow neutrophils (PurityR 97.5%) isolated from naiveCsf3r+/+ mice were

injected i.v. in Csf3r�/� sarcoma-bearing mice, once a week, starting from the first visible observation of tumor occurrence (range
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75-100 days after 3-MCA administration), until mice reached the experimental endpoint. In a second set of experiments, neutrophils

were injected in Csf3r�/� mice on day �1, 0, 1 and 9 with respect to 3-MCA administration, and mice were sacrificed on day 10.

Generation of Bone Marrow Chimeras
Csf3r-competent and -deficient micewere lethally irradiated with a total dose of 900 cGy. 2 hours later micewere injected in the retro-

orbital plexus with 4x106 nucleated bonemarrow cells obtained by flushing of the cavity of a freshly dissected femur fromwild-type or

Csf3r-deficient donors. Recipient mice received gentamycin (0.8 mg/ml in drinking water) starting 10 days before irradiation and

maintained during 2 weeks. 8 weeks after bone marrow transplantation, mice were challenged with 3-MCA.

Sarcoma transplantable models
FS6 and MN-MCA1 cell lines were cultured in RPMI-1640 medium supplemented with 10% Fetal Bovine Serum (FBS) 1% L-Gluta-

mmine, 1% Pen/Strept. On the day of the experiment cells were detached with Tripsin/EDTA solution (Lonza, Basel, Switzerland),

washed twice in PBS�/� and diluted in PBS�/� before injection. Mice were anesthetized and shaved on the back, 2x106 FS6 or

5x105 MN-MCA1 were injected subcutaneously. In the in vivo cotransfer experiments cells were co-injected with FACS-sorted

1x105 DNTab cells isolated from spleen of healthy Csf3r+/+ mice.

Undifferentiated pleomorphic sarcoma patients
Patients (n = 19) whose biological samples were included in the study gave their signed consent to donate the tissue remaining after

the diagnostic procedure. Human UPS surgical samples were collected from Humanitas Biobank (n = 19), upon approval by the Hu-

manitas Research Hospital Ethical Committee (authorization 609/17, issued on 18 December 2017). Informed consent was obtained

from all participants. Demographics and clinicopathologic features of recruited patients are described in Table S7.

METHOD DETAILS

Organ collection, digestion and flow cytometry analysis
Single-cell suspensions of sarcomas, blood, spleen and skin were obtained and stained. Sarcomas were manually disaggregated

and incubated with 0.1 mg/mL Type IV Collagenase (Sigma Aldrich) in PBS�/� at 37�C for 60 minutes. Cell suspensions from spleen

were obtained as previously described (Ponzetta et al., 2015). Dorsal skin samples from untreated mice and 3-MCA injection sites

were manually disaggregated and incubated with 0.35 mg/mL DNase (Roche, Basel, Switzerland) and 0.125 mg/mL Liberase TM

(Roche) in RPMI at 37�C for 90 minutes. Before further procedures, cell suspensions from every organ were filtered using 70 mm

cell strainers (Corning, Corning, US). Extracellular staining was performed using a PBS�/� buffer containing FCS 2%, EDTA 2mM

and NaN3 0.05%. Prior to any surface staining, cells were incubated with Aqua LIVE/Dead-405 nm staining (Invitrogen, Carlsbad,

US) or Live/Dead Fixable Dye eF780 (ThermoFisher, Waltham, US) and negative cells were considered viable. Then Fc blocking

reagent (Clone 24G2) was added to any cell suspension for 10 minutes at 4�C. Finally, extracellular staining was performed, and

antibody mix was added to cell suspension for 20 minutes at 4�C. The following murine antibodies were used: anti-CD45-BV605,

-BV650 or -PerCp-Cy5.5 (Clone 30-F11); anti-CD3e-PerCP-Cy5.5 or -APC (Clone 145-2C11); anti-CD45.2-BUV805 (Clone 104);

anti-CD19-PE, - PerCP-Cy5.5 or -eFluor450 (Clone 1D3); anti-NK1.1-APC, -PE, -PECF594 or -BV650 (Clone PK136); anti-CD11b-

BV421, -BV480, -BV786, -APCCy7, -FITC (Clone M1/70); anti-CD27-FITC, –APC-eFluor780 or PE-Cy7 (Clone LG.7F9); anti-CD4-

AlexaFluor700 (Clone RM 4-5) or -FITC (Clone H129.19); anti-CD8-PE, BV480 or -BV570 (Clone 53-6.7); anti-iFNg-Alexa700 or

-BV421 (Clone XMG1.2), anti-Ly6G-PECF594, -BUV395 (Clone 1A8), anti-Ly6C-FITC or –BV421 (Clone AL-21), anti-MHCII-PercP-

Cy5.5, -BV711 (Clone 2G9) or –FITC (Clone M5/114.15.2), anti-F4/80-PECy7 (Clone BM8), anti-CD103-PercP-Cy5.5 (Clone 2E7),

CD86-eF450 (Clone GL-1), anti-CD24-APCeF780 (CloneM1/69), anti-CD64-PE (Clone X54-5/7.1), anti-CD11c-AlexaFluor700 or

-PE (Clone HL3), anti-TCRb-BV711 (Clone H57-597), anti-TCRgd-BV421 or –PercP-Cy5.5 (Clone GL3), anti-T-bet-PE or –BV785

(Clone O4-46), anti-Eomes-AlexaFluor488 (Clone Dan11Mag), anti-Rorgt-PECF594 (Clone Q31-378), anti-PLZF-AlexaFluor674

(Clone R17-809), anti-CD54-PE (Clone 3E2), anti-CD49a-BV711 (Clone Ha31/8), anti CD49b-APC (CloneDX5), anti-KLRG1-

BV786 (Clone 2F1), anti-NKP46-BV421 (Clone 29A1.4), anti-Ly49F-BV421 (Clone HBF-719); anti-Ly49C-I-BV605 (Clone 5E6);

anti-Ly49A-BUV395 (Clone A1); anti-Ly49G2-BV480 (4D11), anti-NKG2A/C/E-BUV563 (Clone20d5); anti-CD94-BV650 (Clone

18d3); anti-CD62L-APC or –BV570 (MEL-14) from BD Bioscience (San Jose, US), ThermoFisher (Waltham, US), BioLegend (San

Diego, US) or Miltenyi Biotec (Bergisch Gladbach, Germany). Murine iNKT cells were detected using CD1d-APC tetramers loaded

with aGalCer (ProImmune, Oxford, UK), while murine MAIT cells were detected using MR1-BV421 or -PE tetramers loaded with

5-OP-RU (kindly provided by James McCluskey, University of Melbourne). To avoid non-specific tetramer binding, during MAIT

staining cells were pre-incubated with the irrelevant unconjugated tetramer MR1 loaded with 6-FP (as described in Corbett et al.,

2014; Rahimpour et al., 2015; Reantragoon et al., 2013). Foxp3/Transcription Factor Staining Buffer Set (ThermoFisher) was used

for intracellular staining of transcription factors and cytokines. Results are reported as frequency or as mean fluorescence intensity

(MFI) normalized on isotype control or fluorescence minus one (FMO). Cells were analyzed on LSR Fortessa (BD Bioscience), for

some experiments cells were analyzed on FACSymphony (BD Bioscience). Data were analyzed with FlowJo software (Treestar,

Ashland, US).
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PrimeFlow RNA Assay
PrimeFlow RNA Assay (ThermoFisher Scientific) was performed following manufacturer’s instructions. Briefly, a single-cell suspen-

sion was obtained from dorsal skin of 3-MCA-treated mice and stained for surface antigens as described above. After fixation and

permeabilization, il12a-AlexaFluor647-, il12b-AlexaFluor488- or actb-AlexaFluor647-conjugated target probes were added for hy-

bridization, that was performed at 40�C for 2 hours. Signal amplification was achieved by adding PrimeFlow RNA Pre-Amp mix

for 1.5 hours at 40�C and then PrimeFlow RNA Amp Mix for 1.5 hours at 40�C.

In vivo EdU-based proliferation assay
EdU (5-ethynyl-20-deoxyuridine) was administered i.p. (0.5mg/mice) to 3-MCA-treated mice, 24 hours before sacrifice once they

reached the experimental endpoint (calculated tumor volume of 2000 mm3). A single-cell suspension was obtained and surface an-

tigen staining was performed. EdU staining was performedwith Click-iT EdUAlexaFluor647 FlowCytometry Assay Kit (ThermoFisher

Scientific) following manufacturer’s instructions.

Bone-marrow derived macrophages (BMDMs)
Mouse bone-marrow cells were isolated from femurs and tibiae ofCsf3r+/+mice and cultured at density of 1.5x106 cells/mL in RPMI-

1640 medium supplemented with 10% Fetal Bovine Serum (FBS) 1% L-Glutammine, 1% Pen/Strept, with 20 ng/mL of murine GM-

CSF or 25 ng/mL of murine M-CSF (both M-CSF and GM-CSF were purchased from Peprotech). Cells were washed with PBS and

medium replaced at day 2 and 5. BMDMswere stimulated on day 7with murine IFNg (20 mg/mL) or murine IL-4 (20 mg/mL), alone or in

combination with murine G-CSF (50 ng/mL). After 24 hours cells were lysed with Trizol for further mRNA quantification.

For co-culture experiments, GM-CSF-derived BMDMs were stimulated with GM-CSF (50 ng/mL), either alone or in combination

with CpG (250 nM) (Invivogen, San Diego, US) or STING agonist cAIMP (1 mg/mL) (Invivogen). In indicated conditions, BMDMs

were co-cultured with 3x105 FACS-sorted neutrophils for 24 hours. In transwell experiments neutrophils were added into the upper

compartment of a Transwell permeable support with 0.4 mm pore (Corning, NY, US). After 24 hours medium was collected and IL-

12p70 concentration was analyzed by ELISA.

Ex vivo functional assays
Tumor-infiltrating leukocytes were MACS-enriched using CD45 Microbeads (Miltenyi Biotec) according to manufacturer’s instruc-

tions, obtaining a purity R 85%. Enriched cells were cultured in RPMI-1640 medium supplemented with 10% Fetal Bovine Serum

(FBS) 1% L-Glutammine, 1% Pen/Strept and IFNg intracellular staining was performed upon 5 hours of treatment with Cell Stimu-

lation Cocktail 1X (ThermoFisher), using Foxp3/Transcription Factor Staining Buffer Set (ThermoFisher). BD GolgiPlugTM (containing

Brefeldin) was added 4 hours prior to intracellular staining.

Cytokines stimulation experiments were performed on MACS-enriched CD45+ Tumor-infiltrating leukocytes, that were previously

depleted of CD11b+ cells (CD11b Microbeads, Miltenyi Biotec). Enriched cells were stimulated with the indicated combinations of

IL-2 (Proleukin, Novartis) (10ng/mL), recombinant murine IL-12 (Peprotech, London, UK) (20 ng/mL), human IL-18 (MBL, Woburn,

US) (50 ng/mL) for 16 hours. BD GolgiPlugTM was added during the last 4 hours of stimulation. Intracellular staining was performed

as indicated before using Foxp3/Transcription Factor Staining Buffer Set (ThermoFisher).

Purified splenic T cells from healthy Csf3r+/+ mice at a concentration of 3x106 cells/mL were stimulated with recombinant murine

IL-12 (Peprotech, London, UK) (20 ng/mL) and/or human IL-18 (MBL, Woburn, US) (50 ng/mL) for 16 hours. BD GolgiPlugTM (con-

taining Brefeldin) was added during the last 4 hours of stimulation.

In a second set of experiment, purified splenic T cells from healthyCsf3r+/+ mice were cultured with conditionedmedium (CM) from

BMDMs and neutrophils co-cultures at a concentration of 3x106 T cells/mL. Rat anti-iL-12p75 (Clone R2-9A5; Rat Isotype Control,

Clone LTF-2) 20 mg/mL were added to the CM and incubated at 4�C for 30 minutes, before the incubation with T cells. Cells were

incubated for 24 hours, and BD GolgiPlugTM was added during the last 4 hours of stimulation.

RNA purification
For qPCR experiments, total RNA was extracted using Trizol reagent (Invitrogen) following the manufacturer’s recommendations.

RNA was further purified using RNeasy Min-elute RNA isolation kit (QIAGEN, Hilden, Germany). For 30 mRNA sequencing experi-

ments, RNAwas purified withMaxwell 16 LEV SimplyRNACells Kit (Promega, Madison, US) usingMaxwell 16 Instrument (Promega).

Quantitative PCR
cDNA was synthesized using 2 mg of total RNA by reverse transcription using High Capacity cDNA archive kit (Applied Biosystems,

Foster City, US) and quantitative real-time PCR was performed using the SybrGreen PCR Master Mix (Applied Biosystems) in a

CFX96 TouchTM Real-Time PCR Detection System (Bio-Rad, Hercules, US). Data were analyzed with the D2CT method (Applied

Biosystems, Real-Time PCR Applications Guide). Data were normalized based on the GAPDH expression determined in the same

sample. Analysis of all samples was performed in duplicate. Primers were designed according to the published sequences and listed

as follows:

Retnla (Fizz1): forward 50-CCCTTC TCA TCTGCATCTCC-30, reverse 50-CTGGAT TGGCAAGAAGTTCC-30;Chil3 (Ym1): forward

50-TCT GGG TAC AAG ATC CCT GAA-30, reverse 50-TTT CTC CAG TGT AGC CAT CCT T-30; Ccl5: forward 50-TGC AGA GGA CTC
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TGA GAC AGC-30, reverse 50-GAG TGG TGT CCG AGC CAT A-30; Nos2: forward 50-GCC ACC AAC AAT GGC AAT A-30, reverse
50-CGT ACC GGA TGA GCT GTG AAT T-30; Ccl2: forward 50- ATT GGG ATC ATC TTG CTG GT-30, reverse 50- CCT GCT GTT

CAC AGT TGC C-30; Arg1: forward 50- TTT TTC CAG CAG ACC AGC TT-30, reverse 50- AGA GAT TAT CGG AGC GCC TT-30;
Tgfb1: forward 50-CAA CCC AGG TCC TTC CTA AA-30, reverse 50- GGA GAG CCC TGG ATA CCA AC-30; Il27p28: forward 50-
AGC TCT TGA AGG CTC AGG G-30, reverse 50- GTG ACA GGA GAC CTT GGC TG-30; Ifng: forward 50-TCA AGT GGC ATA GAT

GTG GAA GAA-30, reverse 50-TGG CTC TGC AGG ATT TTC ATG-30; Il10: forward 50-GGT TGC CAA GCC TTA TCG GA-30, reverse
50-ACC TGC TCC ACT GCC TTG CT-30; Stab1: forward 50-CCC TCC TTC TGC TCT GTG TC-30, reverse 50- CAA ACT TGG TGT GGA

TGT CG-30; Mrc1: forward 50-TGG CAT GTC CTG GAA TGA T-30, reverse 50-CAG GTG TGG GCT CAG GTA GT-30; Msr1: forward

50-TGC CCT CAT TGC TCT CTA CC-30, reverse 50- TTC ATT TCC CAA TTC AAA AGC TC-30; Il4ra: forward 50- GTG GAG CCT

GAA CTC GCA-30, reverse 50-AAG CAC GCA GAT CCA AAA TC-30;Marco: forward 50-TTC TGT CGC ATG CTC GGT TA-30, reverse
50-CAG ATG TTC CCA GAG CCA CC-30; Met: forward 50-TGT CCG ATA CTC GTC ACT GC-30, reverse 50-CAT TTT TAC GGA CCC

AAC CA-30; Il1b: forward 50- GGT CAA AGG TTT GGA AGC AG-30, reverse 50- TGT GAA ATG CCA CCT TTT GA-30; Ccl3: forward 50-
GTGGAATCTTCCGGCTGTAG-30, reverse 50- ACCATGACACTCTGCAACCA-30; Cxcl10: forward 50-CCG TCA TTT TCT CCC TCA

TCC-30, reverse 50- CCC TAT GGC TGC TTC ACT CTC A-30; Il23a: forward 50-AGC ATT TAT GCT TCC AAA GC-30, reverse
50-GGA GGT CTC AAG TTC CTA CAT G-30; Ccr3: forward 50-TGA AAC TGT GAT CTT GGG ACA-30, reverse 50-CAG CAT CAA

CAA CAC GTT CC-30; Il1r5: forward 50-GAT GCA TGT TTA GGC TTC CA-30, reverse 50-TCT TCT GCT GTC TGG AGC AA-30; Il1r7:
forward 50-AGA GTG CAG AGA GGC AAA CC-30, reverse 50-TGA AAC CCT CTT CCT CCA GA-30; Il12rb1: forward 50- GCA GCC

GAG TGA TGT ACA AG-30, reverse 50- GAG ACG CGA AAA TGA TGG AT-30; Il12rb2: forward 50- AAC ACC AGA GGA AGA GCC

TG-30, reverse 50- CGT CACCTG ATA GTGGAGGA-30;Gapdh/GAPDH: forward 50-GCA AAG TGG AGA TTG TTGCCA T-30, reverse
50-CCT TGA CTG TGC CGT TGA ATT T-30.

30-mRNA Sequencing
Tumor-infiltrating CD4+, CD8+, UTCab and gd T cells from Csf3r+/+ and Csf3r�/� sarcomas were FACS sorted (quadruplicates for

Csf3r�/� and for Csf3r�/� mice), and RNA was prepared as described above.

Total RNA extracted frompurified T cell subsets were subjected to Poly(A) mRNA sequencing. Libraries were constructed using the

SMART Seq v4 Ultra Low Input RNA kit according to manufacturer’s instruction (Illumina, San Diego, US). Sequencing was per-

formed with the NextSeq 500 (Illumina). All libraries were sequenced in single-end mode (75bp length).

Single-cell RNA sequencing
UTCab sorted populations in Csf3r�/� and Csf3r+/+ mice were subjected to single-cell RNA sequencing analysis. Two biological rep-

licates for each condition (Csf3r�/� and Csf3r+/+) were analyzed. Single cell suspensions of cells have been prepared by tissue

mincing and enzyme digestion. FACS-sorted UTCabwere countedwith an automatic cell counter (Countess II, Thermo Fisher). UTCab

were loaded into one channel of the Single Cell Chip A using the Single Cell 30 reagent kit v2 (10X Genomics) for gel bead emulsion

generation. Following capture and lysis, cDNA was synthesized and amplified for 14 cycles following the manufacturer’s protocol

(10X Genomics). 50 ng of the amplified cDNAwere then used for each sample to construct Illumina sequencing libraries. Sequencing

was performed on the NextSeq500 Illumina sequencing platform following 10x Genomics instruction for reads generation. We recov-

ered a total number of 15,137 cells from Csf3r+/+ and 17,388 cells from Csf3r�/� samples. An average sequencing depth of 20,000

reads/cell was recovered for each sample we processed. Cells with a null Cd3e unique molecular identifier (UMI) count were not

considered further for the analysis, resulting in a total number of 31,623 cells (14,721 cells for Csf3r+/+ and 16,902 cells for

Csf3r�/� samples).

Purification of murine leukocytes
Bone marrow neutrophils were MACS-enriched with Neutrophil Isolation Kit (Miltenyi Biotec) according to manufacturer’s instruc-

tions for adoptive transfer experiments. Purity of neutrophils was > 98% as determined by flow cytometry.

For in vitro co-cultures experiments MACS-enriched neutrophils were stained for LiveDead-Fixable Dye eF780; anti-CD45-BV605;

anti-CD11b-BV421; anti-Ly6G-PECF594 and sorted on a FACSAria cell sorter (BD Bioscience) to obtain a highly purified neutrophils

population (purity > 99%).

Splenic T cells were MACS enriched with Pan T cell Isolation kit II (Miltenyi Biotec) according to manifacturer’s instructions, for

ex vivo stimulation with cytokines. Purity of the obtained CD3+ cells was > 99%. In some experiments, splenic T cells were

MACS enriched and subsequently T cell subsets (CD4+, CD8+, UTCab and gd T cells) were FACS-sorted. Resulting cells were pro-

cessed for mRNA extraction.

For RNA expression analysis on neutrophils, macrophages, immature macrophages and monocytes, tumor-associated CD11b+

cells were MACS-enriched (CD11b Microbeads, Miltenyi Biotec) according to manufacturer’s instructions. CD11b+ cells repre-

sented more than 85% of resulting cell suspension. Next, neutrophils, macrophages, immature macrophages and monocytes

were stained with LiveDead-Fixable Aqua, anti-CD45-BV605, anti-CD11b-BV786, anti-Ly6G-PECF594, anti-Ly6C-FITC, anti-F4/

80-PECy7, anti-CD64-PE, anti-CD11c-AlexaFluor700 and sorted on a FACSAria cell sorter (BD Bioscience) to obtain high purity

myeloid populations. Purity of each population was > 98%. Resulting cells were processed for mRNA extraction.
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For RNaseq experiments on T cell subset populations, tumor cells were depleted of CD11b+ cells and resulting cells were

stained with LiveDead-Fixable Aqua, anti-CD45-BV605, anti-CD11b-APCCy7, anti-TCRb-BV711, anti-TCRgd-BV421, anti-CD4-

AlexaFluor700 and anti-CD8-BV570 and sorted on a FACSAria cell sorter to obtain high purity T cell subset populations. Purity of

each population was > 98%. Resulting cells were processed for mRNA extraction.

For single cell RNaseq experiments on UTCab, tumor infiltrating leucocytes from Csf3r+/+ and Csf3r�/� mice were MACS-enriched

(CD45+ TIL Microbeads), then CD11b+ cells and CD4+/CD8+ T cells were depleted. Cells were FACS-sorted as CD45+/CD11b-/

TCRb+/TCRgd-/CD4-/CD8- cells. Resulting cells (purity < 99.9%) were further processed for single cell RNaseq.

For the in vivo cotransfer experiments, splenic T cells were first MACS-enriched with Pan T cells Isolation kit II; after negative se-

lection of CD4-/CD8- T cells (CD4+/CD8+ T cells Microbeads, Miltenyi Biotec) cells were stained with fluorophore-conjugated anti-

bodies and DNT ab cells were FACS-sorted on a FACSAria as CD45+/CD11b-/CD19-/TCRb+/TCRgd-/CD4-/CD8-/MR1-OP-RU-/

CD1d-aGal/Cer- cells. Cell purity was < 99.0%.

Cytokine Measurement
Tumors or 3-MCA injection sites were homogenized in 1 mL PBS�/� containing protease inhibitors (Complete-EDTA-free; Roche)

and PMSF (1mM). Tissue homogenates were centrifuged at 14000 rpm for 30 min at 4�C and supernatants were stored at �20�C
for cytokine analysis. Murine IFNg, CCL2, CXCL1, CXCL2, CXCL12, M-CSF, G-CSF, TNFa, IL-22, IL-1b, IL-6, IL-12p70, VEGF,

TGFb and IL-23p19 were measured in tissue homogenates by ELISA (R&D DuoSet ELISA Development System) according to man-

ufacturer’s instructions. Murine IL-18, IL-17A were measured in tissue homogenates by ProcartaPlex Assay (ThermoFisher) accord-

ing to manufacturer’s instructions.

Immunohistochemistry
PFA-fixed, paraffin-embedded mouse tumor tissues were analyzed for each condition. Consecutive sections from the middle of the

tissue were used for histological examination in each mouse. Paraffin-embedded tissue sections were mounted on Super-frost

slides, dewaxed in xylene and rehydrated in ethanol. Endogenous peroxidase was blocked for 20 min in 90% ethanol containing

2% H2O2. Sections were then pretreated in a microwave oven (two cycles for 3 minutes each at 800 W, in 0.25 mM EDTA buffer).

Unspecific sites were blocked with Rodent Block M (Biocare Medical) 30 minutes and tissues were incubated for two hours with af-

finity-purified Ig against CD31 (Clone MEC13.3; BD Bioscience) in PBS supplemented with BSA (1%) and NP40 (0.02%). Envision+

SystemHRP Labeled Polymer anti Rabbit (Dako), Rat onMouseHRP-Polymer kit (BiocareMedical) was used as secondary antibody.

For anti-humanCD66b staining, paraffin embedded tissueswere cut at 3 mmand put over night at 37�C. Then sectionswere dewaxed

in xylene and rehydrated in ethanol. Antigen unmasking was performed in Decloaker Chamber in DIVA Buffer (BiocareMedical) (3 mi-

nutes at 125�C, 5minutes at 90�C). Endogenous peroxidasewas blockedwith H2O2 2% for 20minutes. Unspecific binding sites were

blocked with Background Sniper (Biocare Medical) for 15 minutes. Mouse anti-human CD66b (Clone G10F5; BD PharMingen, CA) or

control antibody was diluted in Washing Buffer (PBS pH 7.00 + 0.05% Tween 20) and incubated in humid chamber 1h. MACH 1 HRP

polymer (Biocare Medical) was used as secondary antibody. After washing, slides were developed with DAB (3,30-diaminobenzidine)

(Biocare Medical) and counterstained with Hematoxilyn. Tissues were dehydrated with ethanol, mounted with Eukitt and analyzed

with an Olympus BX61 virtual slide scanning system. The number of CD66b+ cells infiltrating the tumors was determined in whole

tissue sections (magnification 20X) and mean values were employed to divide tumors in CD66bhigh and CD66blow.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analysis
For animal studies, sample size was defined on the basis of past experience on cancer models, to detect differences of 20% or

greater between the groups (10% significance level and 80% power). Values were expressed as mean ± s.e.m. Wilcoxon

matched-pairs signed-rank test was used to compare two groups for tumor incidence. Friedman test with Dunn’s multiple compar-

ison was used to compare tumor incidence for multiple group experiments. One-way ANOVA or Kruskal-Wallis test were used to

compare multiple groups. Two-tailed multiple Student’s t test was used to compare unmatched groups with Gaussian distribution.

Two-tailed Mann–Whitney U-test was used to compare unmatched groups with non-Gaussian distribution. The Kaplan-Meier

method was used for survival curve analysis, and the log-rank (Mantel-Cox) test was used to determine the statistical significance.

p % 0.05 was considered significant. A ROUT test was applied to exclude outliers. Statistics were calculated with GraphPad Prism

version 7, GraphPad Software.

30-mRNA Sequencing analysis
Raw reads were preprocessed for adaptor trimming and quality check was assessed using the FastQC tool (http://www.

bioinformatics.babraham.ac.uk/projects/fastqc). Reads were aligned to the reference genome (Ensembl Mouse release GRC38)

using the STAR (Dobin et al., 2013) algorithm. To minimize the variability among replicates, a coefficient of variation (CV) was calcu-

lated based on TMM (TrimmedMean ofM-Values) normalized expression values in each group. Genes exceeding 100%CV in at least

one replicate’s group were not considered for further differential expression analysis. Differential expression analysis was performed

using the GLM approach implemented in the R/Bionconductor (Gentleman et al., 2004) edgeR (Robinson et al., 2010) package
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(p value% 0.001). Results of differential analysis are provided in Table S2. The resulting gene lists were analyzed through the use of

Ingenuity Pathways Analysis (IPA) (Krämer et al., 2014). Results of IPA analysis are provided in Table S3.

Single cell RNA sequencing analysis
Raw sequencing data in the format of bcl files were converted in fastq files and aligned to the mouse reference genome [http://cf.

10xgenomics.com/supp/cell-exp/refdata-cellranger-mm10-1.2.0.tar.gz] taking advantage of the Cell Ranger Pipeline version 2.1,

provided by 10X Genomics. Raw digital gene expression matrix (unique molecular identifier (UMI) counts per gene per cell) were

analyzed using the Seurat R package version 2.3.0 with default parameters. To assess the correlation between biological replicates

in each condition we computed a Pearson correlation analysis using normalized gene expression matrices (Figure S5L-M). Based on

high correlation between replicates, samples belonging to each condition were pooled together using the Cell Ranger aggregate op-

tion producing a unique raw digital gene expression matrix in Csf3r�/� and Csf3r+/+ conditions. Pooled data were imported into the

Seurat pipeline and filtered applying the following thresholds: less than 200 ormore than 3500 as unique expressed genes, more than

20000 as the number of UMIs and 10% as the percentage of mitochondrial genome content (forCsf3r+/+ condition) and less than 200

or more than 4000 as unique expressed genes, more than 20000 as the number of UMIs and 10% as the percentage of mitochondrial

genome content (forCsf3r�/� condition). Cell cycle phases were predicted and corrected in each dataset using a Seurat function that

scores each cell based on the expression of canonical marker genes for S and G2/M phases. The resulting dataset was normalized

through a global-scaling method, converted by a scale factor (10,000 by default) and log-transformed using the ScaleData Seurat

implemented function. A canonical correlation analysis was run in order to identify common sources of variation between the two

datasets, using the RunCCA implemented function that stores into a single object the canonical correlation vectors. Finally an inte-

grated analysis of the two datasets was performed choosing a number of 30 correlation components. The resulting data were sub-

jected to clustering analysis using standard Seurat package procedures. A validation consistency procedure of the resolution (using

the ValidateCluster function) allowed us to select 0.6 as the suitable resolution level. The total 12 identified clusters were visualized

using t-distributed Stochastic Neighbor Embedding of the principal components (t-SNE) as implemented in Seurat.

Average gene expression matrices were retrieved for each cluster and a Spearman correlation analysis was performed, using the

Picante R package version 1.6-2. Differential expression analysis among clusters (using the FindAllMarkers implemented function,

with parameters only.pos = FALSE,min.pct = 0.2, thresh.use = 0.2) allowed us to select the topmarkers expressed at a higher level by

each cluster.

Pathway enrichment analysis examining enriched processes in clusters was performed using Gene Set Variation Analysis (GSVA)

software (Hänzelmann et al., 2013) from Bioconductor (version 3.8). Mouse_AllPathways_November_01_2018_symbol.gmt from

[http://download.baderlab.org/EM_Genesets/current_release/] was used to identify enriched cellular pathways in GSVA.

Single-cell trajectory analysis
Monocle (Qiu et al., 2017; Trapnell et al., 2014) was used to investigate transcriptional and functional trajectories concerning the

twelve clusters identified with Seurat (see Cell clustering, differential expression and pathway analysis paragraph). Using the

reversed graph embedding approach, Monocle learns the kinetics of gene expression and places each cell along an inferred trajec-

tory. The data, in the format of raw data, together with clusters information deriving from Seurat, were loaded into a Monocle

object. Normalization and dimensionality reduction were performed using default parameters. The trajectory was designed using

the plot_cell_trajectory command. Cells were ordered along an artificial trajectory based on gene expression changes among

clusters. Genes that underwent a significant change along pseudotime (q-value < 0.05) were visualized by a heatmap using

plot_pseudotime_heatmap. The trend of Klra1, Klra6, Klra7 and Klrd1 gene expression was depicted by individual graphs using

the plot_genes_in_pseudotime function.

Public gene expression data analysis
Publicly available RNA sequencing data were downloaded from the Cancer Genome Atlas database (TCGA) through the Firebrowse

repository (http://firebrowse.org/; release 01/28/2016), for Sarcoma dataset (SARC) and from Xena Browser (https://xenabrowser.

net/) for Melanoma dataset (SKCM).

The sarcoma dataset included a total of 261 tumor samples, classified in the following subtypes: dedifferentiated liposarcoma

(n = 58), desmoid tumor (n = 2), giant cell sarcoma (n = 1), leiomyosarcoma (lms, n = 104), malignant peripheral nerve sarcoma (mpnst,

n = 10), myxofibrosarcoma (n = 25), synovial sarcoma (n = 10), undifferentiated sarcoma (ups, n = 51). Sarcoma histotypes with a total

number of samples < 10were excluded from further analysis. TheMelanoma dataset included a total of 474 patients. RSEM (RNASeq

by Expectation-Maximization) expression values were retrieved and log-transformed. For colorectal cancer (CRC) cohort we used a

microarray dataset (GEO: GSE24551) including a total of 160 samples. For ovarian cancer we used a microarray dataset (GEO:

GSE32062) including a total of 270 samples, from which we selected the high grade cohort (128 samples). For both datasets we

used respectively Robust Multi-array Average (RMA) and Normalized Signal Intensity (NSI) gene expression values as provided

by GEO.

Survival analysis was performed with GraphPad PrismTM using the Kaplan-Meier (KM) approach and applying the Log-rank

(Mantel-Cox) test to estimate survival curves comparison. For CSF3R survival analysis, the median gene expression value was

used to classify tumor samples into CSF3Rlow and CSF3Rhigh gene expression groups. A signature of 31 neutrophil-related genes
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was retrieved from Bindea et al. (Bindea et al., 2013) (Table S6). This neutrophil-specific gene signature was based on previous

microarray datasets of gene expression in resting and activated human peripheral blood leukocyte subsets (Chtanova et al.,

2005). In particular, the signature is composed of genes with higher expression in resting and LPS-activated neutrophils compared

to any other leukocyte subset. Of note, CSF3R was included in the neutrophil signature and, in the TCGA dataset of UPS patients, a

significant correlation was observed between CSF3R expression and 28 out of 30 genes present in the neutrophil signature (not

shown). Type 1 immune response gene signature was designed by including factors known to be upstream or downstream of

IFNG signaling pathway (genes listed in Table S6) (Ayers et al., 2017; Ikeda et al., 2002; Murphy et al., 2000; Swain et al., 2012). Their

expression correlated with IFNG (p < 0.005, not shown). For both signatures, RSEM or normalized signal values were converted into

z-score applying the following transformation: z-score = (X – average(X))/stdev(X), where X represents gene expression values. The

average and standard deviation were calculated considering the expression of X across all tumor samples, as previously described

(Chao et al., 2016). Finally, the median z-score value was considered as the threshold to define Low and High expression groups.

Statistics and reproducibility
Figures 1A and 1B, n = 10mice per group; Figure 1C, n = 20 (Csf3r+/+), n = 8 (Csf3r�/�), n = 12 (Csf3r�/� + Nf). Figures 1A and 1B, one

representative experiments out of twenty performed; Figure 1C, pooled data of two independent experiments performed.

Figure 2A, n = 9 mice per group; Figures 2B and 2C, n = 8 (Csf3r+/+ isotype), n = 9 (Csf3r+/+ anti-CD115), n = 9 (Csf3r�/� isotype) or

n = 10 (Csf3r�/� anti-CD115) mice per group, Figure 2D, n = 5 (Csf3r+/+), n = 5 (Csf3r�/�), n = 4 (Csf3r�/� + Nf); Figure 2E, n = 10

(Csf3r+/+), n = 10 (Csf3r�/�), n = 4 (Csf3r�/� + Nf) Figure 2F, n = 9 mice per group; Figures 2A–2F, one experiment performed.

Figure 3A, n = 12 (Csf3r+/+) or n = 18 (Csf3r�/�) mice; Figure 3C, n = 16 (Csf3r+/+) or n = 21 (Csf3r�/�) mice; Figure 3D, n = 5 (Csf3r+/+),

n = 14 (Csf3r�/�), n = 5 (Csf3r�/�+neutrophils); Figure 3E, n = 11 (Csf3r+/+), n = 14 (Csf3r�/�), n = 14 (Csf3r�/� + neutrophils) mice;

Figure 3F, n = 9 (Csf3r+/+), n = 20 (Csf3r�/�) mice per group, Figure 3G, n = 5 (Csf3r+/+), n = 14 (Csf3r�/�), n = 5 (Csf3r�/� + NF)

mice per group. Pooled data of two (Figures 3A, 3C, 3E, and 3F) experiments are shown. Figures 3D and 3G, one experiment

performed.

Figure 4A, n = 4mice per group; Figures 4B and 4C, n = 4mice per group; Figure 4D, n = 3mice per group; Figure 4E, n = 6 (Csf3r+/+

isotype), n = 7 (Csf3r+/+ anti-iL-12p70), n = 5 (Csf3r�/� isotype) or n = 4 (Csf3r�/� anti-iL-12p70) mice per group; Figure 4G, n = 5 (Mf),

n = 5 (Nf), n = 8 (Mf+Nf), n = 3 (Mf+Nf Transwell); Figure 4H, n = 4mice per group; Figure 4I, n = 10mice per group. Figures 4A–4F,

one experiment performed. Pooled data of two (Figures 4G and 4H) or three (Figure 4I) experiments are shown.

Figures 5A–5E, n = 2 mice per group; Figures 5F and 5G, n = 5 mice per group. Figures 5A–5E, one experiment performed.

Figures 6A–6D, n = 2 mice per group; Figures 6E and 6F, n = 5 mice per group; Figure 6G, n = 8 (Csf3r+/+), n = 7 (Csf3r+/+ + DNTab);

Figure 6H, n = 8 (Csf3r+/+), n = 7 (Csf3r+/+ + DNTab). Figures 6A–6H, one experiment performed.

DATA AND SOFTWARE AVAILABILITY

Data availability and accession
The accession number for the bulk RNA-sequencing data reported in this paper is Gene Expression Omnibus (GEO) (https://www.

ncbi.nlm.nih.gov/geo/): GSE109031. The accession number for the single cell RNA-sequencing data reported in this paper is Gene

Expression Omnibus (GEO): GSE123508.

The authors declare that all other data supporting the findings of this study are available within the article and its supplementary

information files.

Reagent availability
Reagents used in the present study are described in the Key Resources Table.
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Supplemental Figures

Figure S1. Neutrophil Deficiency in Csf3r�/� Mice and Neutrophil Depletion in Csf3r+/+ Mice Increase Induction of 3-MCA-Sarcomagenesis,

Related to Figure 1

(A) Absolute counts of main leukocyte populations in peripheral blood of healthy Csf3r+/+and Csf3r�/�mice.

(B) Csf3r+/+and Csf3r�/� sarcoma weight of mice sacrificed at the same time point (120 days after 3-MCA injection).

(C-G) Tumor incidence of 5 representative experiments of 3-MCA induced sarcomas in Csf3r+/+and Csf3r�/�mice conducted over a period of 4 years.

(H) Incidence of 3-MCA induced sarcomas in Csf3r+/+ and Csf3r�/� mice bred separately or in cohousing conditions.

(I) Incidence of 3-MCA induced sarcomas in bone marrow chimeras (donor > recipient). (

(J) Incidence of 3-MCA-induced sarcomas in Csf3r+/+ and Csf3r�/� mice treated with anti-Ly6G antibody or with isotype control.

(K) Representative dot plots showing the purity of naive neutrophils used in adoptive transfer experiments, gated on total isolated cells.

(A-B) Data are mean ± SEM. *p % 0.05, **p % 0.01 ***p % 0.001, ns, not statistically significant. (A) Two-tailed multiple Student’s t tests. (B) Two-tailed Mann-

Whitney U test. (C-G), (J) Wilcoxon matched-pairs signed ranked test. (H-I) Friedman test with Dunn’s multiple comparison test.

(A) n = 4 (Csf3r+/+) or n = 5 (Csf3r�/�) mice. (B) n = 27 (Csf3r+/+) or n = 31 (Csf3r�/�) mice. (C-G) n = 8-10mice per group. (H) n = 8 (Csf3r+/+ separate), n = 12 (Csf3r�/�

separate), n = 5 (Csf3r+/+ cohoused), n = 8 (Csf3r�/� cohoused) mice. (I) n = 11 Csf3r+/+ > Csf3r�/�, n = 12 Csf3r�/� > Csf3r�/�, n = 13 Csf3r�/� > Csf3r+/+, n = 14

Csf3r+/+ > Csf3r+/+. (J) n = 8 (Csf3r+/+ isotype) or n = 9 (Csf3r�/� anti-Ly6G) mice. (A-J) One experiment performed. (B) Pooled data of four independent ex-

periments. (C-G) 5 experiments out of twenty conducted over a period of 4 years.



(legend on next page)



Figure S2. TANs inCsf3r+/+Mice Display an Activated Phenotype; Role of Macrophages in the Increased Susceptibility ofCsf3r�/� to 3-MCA

Sarcomagenesis, Related to Figures 1 and 2

(A-C) Number of sarcoma-infiltrating CD45+ cells (A), leukocyte cell subset frequencies (B) and absolute numbers (C) assessed by flow cytometry (tumor

volume y 2000 mm3).

(D-F) Quantification by flow cytometry of CD11b, CD54 and CD62L expression in TANs and peripheral-blood neutrophils from Csf3r+/+ sarcoma-bearing mice.

(G) mRNA gene expression in purified TANs. Gene expression was relative to Gapdh expression and normalized on the mean expression in naive bone marrow

neutrophils (BM NF).

(H) Proliferative activity of tumor-infiltrating myeloid subsets, assessed by flow cytometry (intracellular EdU staining).

(I) Gating strategy for tumor-associated non-granulocytic myeloid populations. Cells represented in left dot plot are pregated on Aqua-/CD45+/Ly6G- cells.

(J-K) Flow cytometry analysis of CD206 and CD11c expression on tumor-associated non-granulocytic myeloid cells

(L) mRNA expression of M1- and M2-selected genes in tumor-infiltrating TAMs. Gene expression was relative to Gapdh expression and normalized on the mean

of expression found in Csf3r+/+ TAMs.

(M-N) Immunohistochemical analysis and relative quantification of CD31+ cells in Csf3r+/+ and Csf3r�/� sarcomas. 5 random fields per sample were counted.

Scale bar, 100 mm.

(O-R, mRNA expression of M1- andM2-related genes in BMDMs generated withM-CSF (O-P) or GM-CSF (Q-R) (seeMethods). Gene expression was normalized

on Gapdh expression.

(S) Representative dot plots showing depletion of TAMs after treatment with anti-CD115 antibody. (T) Incidence of 3-MCA-induced sarcomas in Csf3r+/+ and

Csf3r�/� mice treated with anti-CD115 antibody or with isotype control.

(A-F), (H), (J-K), (N-R). Data aremean ± SEM. *p% 0.05, **p% 0.01 ***p% 0.001, ns, not statistically significant. (A), (D-F). Two-tailedMann-WhitneyU test. (B-C),

(H), (J-K), (O-R) Two-tailed multiple Student’s t tests. (G), (L) Wilcoxon signed rank test. (T) Friedman test with Dunn’s multiple comparison test.

(A) n = 21 mice per group. (B) n = 6 Csf3r+/+ eosinophils, basophils, n = 8 Csf3r�/� eosinophils, basophils, n = 14 Csf3r+/+ T, NK cells, n = 9 Csf3r�/� T, NK cells,

n = 9Csf3r+/+B cells, n = 6Csf3r�/�B cells, n = 17Csf3r+/+ TANs, monocytes, TAMs, immature TAMs, n = 20Csf3r�/� TANs, monocytes, TAMs, immature TAMs.

(C) n = 6Csf3r+/+ eosinophils, basophils, n = 8Csf3r�/� eosinophils, basophils, n = 18Csf3r+/+ T, B, NK cells and TAMs, n = 19 TANs,monocytes, n = 20Csf3r�/�B

cells, n = 21 Csf3r�/� NK, T cells, n = 23 Csf3r�/� TANs, monocytes, immature TAMs, TAMs. (D-F) n = 6 TANs, n = 8 blood neutrophils. (G) n = 5 Il1b, Met, n = 6

Il27p28,Ccl5,Ccl2, n = 9Nos2, Arg, Tnfa, n = 11 Ifng, Ccl3, n = 12Cxcl10. (H) n = 6 (Csf3r+/+) or n = 9 (Csf3r�/�) mice. (J-K) n = 5mice. (L) n = 3 (Cxcl10, Il23a, Ifng),

n = 7 (Retnla), n = 8 (Chil3), n = 9 (Arg1, Stab1,Mrc1, Msr1, Il4ra), n = 10 (Ccr3, Nos2, Il10, Tgfb1). (M-N) n = 7 (Csf3r+/+) or n = 9 (Csf3r�/�) mice. (O-P) n = 4mice per

group. (Q-R), n = 8 (NT, IL-4, IL-4 + G-CSF, IFNg), n = 7 (G-CSF), n = 4 (IFNg+G-CSF). (H) n = 7 (Csf3r+/+ Isotype, Csf3r�/� Isotype, Csf3r�/� anti-CD115) or n = 8

(Csf3r+/+ anti-CD115) mice per group.

(A-C) Pooled data of four experiments are shown. (D-H), (M-N). (S-T) One experiment performed. (J-L) Pooled data from two (J-K) or three (L) experiments are

shown. (O-R) Pooled data from two experiments.



Figure S3. The Polarization of Conventional T Cells Is Not Altered in Csf3r�/� Mice, Related to Figure 3

(A) Ifng mRNA expression determined by qPCR on sorted leukocyte subsets from Csf3r+/+ sarcomas. Gene expression was normalized on Gapdh expression.

(B) Gating strategy used for tumor-infiltrating T cell subset characterization. Left panel represents Live/CD45+ cells.

(C) Expression of Eomes, Rorgt and T-bet in splenic UTCab from sarcoma-bearing Csf3r+/+ and Csf3r�/� mice.

(D) Expression of Eomes, Rorgt and T-bet in CD4+, CD8+ ab T cells and gd T cells infiltrating Csf3r+/+ and Csf3r�/� sarcomas.

(E) Expression of Eomes, Rorgt and T-bet in CD4+, CD8+ ab T cells and gd T cells infiltrating Csf3r+/+ and Csf3r�/� sarcomas after neutrophil adoptive transfer.

(F) Expression of IL-17A by tumor-infiltrating T cells stimulated ex vivo by PMA plus ionomycin.

(G) Frequency of ILC1 subsets infiltrating Csf3r+/+ and Csf3r�/� sarcomas determined by flow cytometry.

(H) Maturation-related subset frequency within cNK cells infiltrating Csf3r+/+ and Csf3r�/� sarcomas, determined by flow cytometry.

(I) Expression of Eomes, Rorgt and T-bet in UTCab, CD4
+ and gd T cells infiltrating the 3-MCA injection site (10 days after administration of 3-MCA) after neutrophil

adoptive transfer. CD8+ T cell polarization state could not be evaluated due to their low frequency in the tissue.

(legend continued on next page)



(J) Frequency of T cell subsets infiltrating 3-MCA injection site (10 days after 3-MCA administration).

(A), (C-J) Data are mean ± SEM. *p % 0.05, **p % 0.01, ***p % 0.001; ns, not statistically significant. (A), (C), (F-H), (J) Two-tailed multiple Student’s t tests. (E, I)

Kruskal-Wallis test with Dunn’s multiple comparison test.

(D-E) 3x106 neutrophils were i.v. transferred once a week starting from the first day the tumor was palpable.

(I-J) 3x106 neutrophils were i.v. transferred at days �1, 0, 1 and 9 with respect to 3-MCA administration.

(A) n = 5 (TAN, Monocytes), n = 6 (Immature Monocytes, T cells), n = 7 (TAMs). (C) n = 5 (Csf3r+/+) or n = 3 (Csf3r�/�) mice. (D) n = 16 (Csf3r+/+) or n = 21 (Csf3r�/�)
mice. (E) n = 5 (Csf3r+/+), n = 14 (Csf3r�/�), n = 5 (Csf3r�/� + neutrophils) mice. (F) n = 10 (Csf3r+/+) or n = 18 (Csf3r�/�) mice. (G-H) n = 7 (Csf3r+/+) or n = 5 (Csf3r�/�)
mice; i, n = 12 (Csf3r+/+), n = 14 (Csf3r�/�), n = 12 (Csf3r�/� + Nf) mice. (J) n = 23 mice per group.

(A), (C), (E), (G-H) One experiment performed. Pooled data from two (D, I) or three (F, J) experiments are shown.



Figure S4. Frequency and Polarization of MAIT and iNKT Cells Are Not Altered in Csf3r�/� Mice, Related to Figures 3 and 4

(A-B) Representative histogram and relative quantification of Plzf expression in tumor-infiltrating Csf3r+/+ and Csf3r�/� UTCab, assessed by flow cytometry.

(C) Representative dot plots from a Csf3r�/� sarcoma. Expression of CD4 and CD8 on tumor-infiltrating iNKT and MAIT cells.

(D) Representative plots showing iNKT, MAIT and DNTab frequencies among sarcoma-infiltrating UTCab in Csf3r+/+ and Csf3r�/� mice.

(E-F) Expression of Eomes, Rorgt and T-bet in sarcoma-infiltrating iNKT and MAIT cells after adoptive neutrophil transfer.

(G-I) Expression of Eomes, Rorgt and T-bet in UTCab, iNKT and MAIT cells at the 3-MCA injection site (10 days after 3-MCA administration) after adoptive

neutrophil transfer.

(J) iNKT, MAIT and DNTab frequencies among CD45+ cells infiltrating the 3-MCA injection site (10 days after administration of 3-MCA) in Csf3r+/+and

Csf3r�/� mice.

(K-L) Representative dot plots (K) and quantification (L) of iNKT, MAIT and DNTab frequencies among CD45+ cells in dorsal skin of healthy Csf3r+/+and

Csf3r�/� mice.

(M-N) Representative histograms (M) and relative quantification (N) of Rorgt expression in iNKT, MAIT and DNTab cells from dorsal skin of healthy Csf3r+/+and

Csf3r�/� mice.

(B), (E-J), (L), (N) Data are mean ± SEM. ***p % 0.001; *p % 0.05; ns, not statistically significant. (B), (J), (L), (N) Two-tailed multiple Student’s t tests. (E), (F), (I)

Kruskal-Wallis test with Dunn’s multiple comparison test. (G-H) One-way ANOVA.

(legend continued on next page)



(E-F) 3x106 neutrophils were i.v. transferred once a week starting from the first day the tumor was palpable.

(G-I) 3x106 neutrophils were i.v. transferred at days �1, 0, 1 and 9 with respect to 3-MCA administration.

(B) n = 16 (Csf3r+/+) or n = 21 (Csf3r�/�) mice. (E-F) n = 5 (Csf3r+/+), n = 14 (Csf3r�/�) or n = 5 (Csf3r�/� + neutrophils). (G-I) n = 6 (Csf3r+/+), n = 7 (Csf3r�/�) or n = 7

(Csf3r�/� + Nf) mice. (J) n = 6 (Csf3r+/+), n = 7 (Csf3r�/�) mice. (L), (N) n = 7 mice per group.

(B) Two pooled experiments. (E-J), (L), (N) One experiment performed.



0

5

10

15

20

25

%
 o

f U
TC

  c
el

ls

Cluster 3 MAIT

Csf3r+/+

Csf3r-/-

scRNAseq FC

0

20

40

60

%
 o

f U
TC

  c
el

ls

Cluster 2+4 T-bet+ DNT

Csf3r+/+

Csf3r-/-

scRNAseq FC

1.22E-04

3.93E-04

9.73E-05

1.92E-04

2.06E-04

2.09E-05

6.67E-06

2.65E-07

1.98E.05

7.02E-06

2.65E-07

-2 -1 0 1 2 3

Immune response of T lymphocytes
Activation of natural killer cells

TH1 immune response
Cell-mediated response

Accumulation of granulocytes
Inflammation of organ

Inflammation of body cavity
Recruitment of neutrophils

Inflammation of absolute anatomical region
Inflammation of joint

Migration of neutrophils

Activation z-score

5.54E-28

1.34E-15

7.71E-04

1.47E-08

3.99E-09

3.04E-04

7.32E-04

1.58E-06

4.18E-14

0 1 2 3 4

IL2

IL18

IL1B

IL13

IL15

IL12

STAT4

ZBTB16

ITK

Activation z-score

U
ps

tre
am

 re
gu

la
to

r

A B

C D E

F G H

CD
4+

 
  T

 ce
lls

CD
8+

 
  T

 ce
lls

UT
C

 T
 ce

lls

0

100

200

300

400

Ifn
g 

ex
pr

es
si

on
(rp

km
)

UTC  T cells CD8+  CD4+  

0

20

40

60

%
 o

f U
TC

  c
el

ls

Cluster 1 Ror t+ DNT

Csf3r+/+

Csf3r-/-

scRNAseq FC

0

2

4

6

8

%
 o

f U
TC

  c
el

ls

Cluster 5 iNKT

Csf3r+/+

Csf3r-/-

scRNAseq FC

tSNE1

Csf3r+/+ sample 1
Csf3r+/+ sample 2

Csf3r-/- sample 1
Csf3r-/- sample 2

tS
N

E2

L

tSNE1

tS
N

E2

I

Eomes+ Ror t+ T-bet+
0

20

40

60

80

100

%
 o

f 
 T

 c
el

ls

Csf3r+/+ + isotype
Csf3r+/+ + anti-IL-12p70
Csf3r-/- + isotype
Csf3r-/- + anti-IL-12p70

ns
ns

ns
ns

ns
ns

*

ns

ns
ns

ns
ns

J

R= 0.95 p<2.2e-16 R= 0.99 p<2.2e-16

C
sf

3r
+/

+  s
am

pl
e 

2

C
sf

3r
-/-

 s
am

pl
e 

2

Csf3r+/+ sample 1 Csf3r-/- sample 1

K

M

TCR  - PercP-eFluor710

TC
R

- B
V7

10

CD8  - BV570

C
D

4 
-A

F7
00

Pregated on
 Live/CD45+/CD11b-/LymphLL o  T cellT s

MR1-OP-RU-BV421

C
D

1d
-

G
al

/C
er

-P
E

UTC

DNTTTT

87.88 22

iNKT
110.44

2.0

MAIT
M N

M
 + 

N M N

M
 + 

N M N

M
 + 

N

0.00

0.05

0.10

0.15

IL
-1

2p
70

 [n
g/

m
l]

- cAIMP+
GM-CSF

GM-CSF

** **

(legend on next page)



Figure S5. UTCab from Csf3r+/+ Mice Show High Expression of Type 1 Immune Response-Related Genes and Are Responsive to IL-12,

Related to Figures 4 and 5

(A) Diagram showing predicted upregulated and downregulated biological pathways using IPA software on Csf3r�/� tumor-associated UTCab, compared to

Csf3r+/+ tumor-associated UTCab. (red: upregulated pathways; blue: downregulated pathways). Associated p-value is shown for each pathway.

(B) RNA-seq analysis of tumor-infiltrating T cell subsets isolated fromCsf3r+/+mice. Differentially expressed genes (p% 0.001) in UTCab comparedwith gd T cells,

CD4+ and CD8+ T cells are shown. Scale bar representing expression z-score in shown on the left.

(C) Relative expression of Ifng mRNA in Csf3r+/+ T cell subsets determined by bulk RNA-seq.

(D) Predicted upstream regulators in tumor-infiltrating Csf3r+/+ UTCab compared with other tumor-infiltrating Csf3r+/+ T cell subsets, generated by IPA analysis;

Associated p-value is shown for each regulator.

(E) Expression of Eomes, Rorgt and T-bet in gd T cells infiltrating the 3-MCA injection site after treatment with IL-12p70-neutralizing antibody or isotype control.

(F) Representative gating strategy for identification of splenic Csf3r+/+ DNTab cells.

(G) IL-12p70 levels detected by ELISA in supernatants of BMDM-neutrophil cocultures after stimulation with GM-CSF+STING agonist cAIMP.

(H-K) Frequency of indicated UTCab subsets within total pool of tumor-infiltrating UTCab cells in Csf3r+/+ and Csf3r�/� mice analyzed by scRNaseq and by flow

cytometry.

(L) t-SNE projections showing overlap between Csf3r+/+ and Csf3r�/� biological replicates.

(M) Pearson correlation analyses of total gene expression averages between the 2 biological replicates across Csf3r+/+ and Csf3r�/� conditions.

(C, E, G–K) Data are mean ± SEM. ***p % 0.001; **p % 0.01; *p % 0.05; ns, not statistically significant. (E) One-way ANOVA, (G) two-tailed Student’s t test.

(C) n = 4 per group. (E) n = 6 (Csf3r+/+ isotype), n = 6 (Csf3r�/� isotype), n = 6 (Csf3r+/+ anti-iL-12p70), n = 5 (Csf3r�/� anti-iL-12p70). (G) n = 3, (H-K) (flow cytometry

data), n = 6 Csf3r+/+, n = 14 Csf3r�/�. (H-K) (scRNaseq data), pooled data from n = 2 Csf3r+/+ and n = 2 Csf3r�/� mice.

(A-E, G-M) One experiment performed.



(legend on next page)



Figure S6. Functional Characterization of Sarcoma-Infiltrating UTCab As Assessed by scRNA-Seq, Related to Figures 5 and 6

(A) Heatmap representing Spearman correlations among the twelve clusters identified, according to their transcriptional profiles. Green and red dashed boxes

highlight the two functionally distinct cluster groups (red: type 1, abundant in Csf3r+/+ sarcomas; green: type 3, abundant in Csf3r�/� sarcomas).

(B) Heatmap showing GSVA enrichment score of selected pathways in clusters 1-12. Clusters are ordered according to their transcriptional similarity.

(C-F) Heatmaps displaying expression of selected genes related to migration capacity (C), proliferation (D), checkpoint and costimulatory molecules (E) and

cytolytic mediators (F). UTCab cluster order is guided by gene expression. Green, red, blue and purple dashed boxes highlight the different functionally distinct

cluster groups and are referred to in the main text.

(G) Heatmap of differentially expressed genes, ordered according to their common expression variation through pseudotime (gene sets 1-6). Selected genes

belonging to each gene set are highlighted on the right.

(A-G) n = 2 mice per group. Scale bars showing Spearman correlation coefficient (A), GSVA enrichment score (B) or gene expression score (C-G) are provided.

One experiment performed.



(legend on next page)



Figure S7. Clinical Significance of TAN Infiltration and Type 1 Immune Response in Soft Tissue Sarcoma Subtypes and Selected Human

Tumors, Related to Figure 7

(A) Kaplan-Meier curve of recurrence-free survival in UPS patients from TCGA cohort.

(B-M) Kaplan-Meier overall survival curves of patients from TCGA cohort with dedifferentiated liposarcoma, leiomyosarcoma andmyxofibrosarcoma with high or

low expression of (B-D)CSF3R, (E-G) TAN gene signature (31 genes), (H-J) IFNG and (K-M) 12 genes related to type 1 immune response within tumor specimens.

(N-U) Kaplan-Meier survival curves of patients of ovarian cancer (N-Q) and skin cutaneous melanoma (R-U) with high or low expression of CSF3R, TAN gene

signature, IFNG and type 1 immune gene signature within tumor specimens.

(V-W) Pearson correlation between CSF3R and IFNG expression in ovarian cancer and melanoma patients. Gene expression is reported as NSI or as RSEM,

respectively (see Methods).

Gene lists used for type 1 immune response and neutrophil signatures are shown in Table S6.

(A-W) Numbers depicted in each graph represent the total number of patients analyzed.

(A-U) p and HR, Hazard Ratio (95% CI ratio) were calculated with log-rank (Mantel-Cox) test. (V-W) Pearson correlation.
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