14 research outputs found

    The effect of an active on-ward participation of hospital pharmacists in Internal Medicine teams on preventable Adverse Drug Events in elderly inpatients: protocol of the WINGS study (Ward-oriented pharmacy in newly admitted geriatric seniors)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The potential of clinical interventions, aiming at reduction of preventable Adverse Drug Events (preventable ADEs) during hospital stay, have been studied extensively. Clinical Pharmacy is a well-established and effective service, usually consisting of full-time on-ward participation of clinical pharmacists in medical teams. Within the current Hospital Pharmacy organisation in the Netherlands, such on-ward service is less feasible and therefore not yet established. However, given the substantial incidence of preventable ADEs in Dutch hospitals found in recent studies, appears warranted. Therefore, "Ward-Oriented Pharmacy", an on-ward service tailored to the Dutch hospital setting, will be developed. This service will consist of multifaceted interventions implemented in the Internal Medicine wards by hospital pharmacists. The effect of this service on preventable ADEs in elderly inpatients will be measured. Elderly patients are at high risk for ADEs due to multi-morbidity, concomitant disabilities and polypharmacy. Most studies on the incidence and preventability of ADEs in elderly patients have been conducted in the outpatient setting or on admission to a hospital, and fewer in the inpatient setting. Moreover, recognition of ADEs by the treating physicians is challenging in elderly patients because their disease presentation is often atypical and complex. Detailed information about the performance of the treating physicians in ADE recognition is scarce.</p> <p>Methods/Design</p> <p>The design is a multi-centre, interrupted time series study. Patients of 65 years or older, consecutively admitted to Internal Medicine wards will be included. After a pre-measurement, a Ward-Oriented Pharmacy service will be introduced and the effect of this service will be assessed during a post-measurement. The primary outcome measures are the ADE prevalence on admission and ADE incidence during hospital stay. These outcomes will be assessed using structured retrospective chart review by an independent expert panel. This assessment will include determination of causality, severity and preventability of ADEs. In addition, the extent to which ADEs are recognised and managed by the treating physicians will be considered.</p> <p>Discussion</p> <p>The primary goal of the WINGS study is to assess whether a significant reduction in preventable ADEs in elderly inpatients can be achieved by a Ward-Oriented Pharmacy service offered. A comprehensive ADE detection method will be used based on expert opinion and retrospective, trigger-tool enhanced, chart review.</p> <p>Trial registration</p> <p>ISRCTN: <a href="http://www.controlled-trials.com/ISRCTN64974377">ISRCTN64974377</a></p

    Genetic drivers of kidney defects in the digeorge syndrome

    Get PDF
    BACKGROUND The DiGeorge syndrome, the most common of the microdeletion syndromes, affects multiple organs, including the heart, the nervous system, and the kidney. It is caused by deletions on chromosome 22q11.2; the genetic driver of the kidney defects is unknown. METHODS We conducted a genomewide search for structural variants in two cohorts: 2080 patients with congenital kidney and urinary tract anomalies and 22,094 controls. We performed exome and targeted resequencing in samples obtained from 586 additional patients with congenital kidney anomalies. We also carried out functional studies using zebrafish and mice. RESULTS We identified heterozygous deletions of 22q11.2 in 1.1% of the patients with congenital kidney anomalies and in 0.01% of population controls (odds ratio, 81.5; P = 4.5×1014). We localized the main drivers of renal disease in the DiGeorge syndrome to a 370-kb region containing nine genes. In zebrafish embryos, an induced loss of function in snap29, aifm3, and crkl resulted in renal defects; the loss of crkl alone was sufficient to induce defects. Five of 586 patients with congenital urinary anomalies had newly identified, heterozygous protein-Altering variants, including a premature termination codon, in CRKL. The inactivation of Crkl in the mouse model induced developmental defects similar to those observed in patients with congenital urinary anomalies. CONCLUSIONS We identified a recurrent 370-kb deletion at the 22q11.2 locus as a driver of kidney defects in the DiGeorge syndrome and in sporadic congenital kidney and urinary tract anomalies. Of the nine genes at this locus, SNAP29, AIFM3, and CRKL appear to be critical to the phenotype, with haploinsufficiency of CRKL emerging as the main genetic driver

    Adverse Drug Reactions in Children—A Systematic Review

    Get PDF
    Adverse drug reactions in children are an important public health problem. We have undertaken a systematic review of observational studies in children in three settings: causing admission to hospital, occurring during hospital stay and occurring in the community. We were particularly interested in understanding how ADRs might be better detected, assessed and avoided

    Topical antibiotics as a major contextual hazard toward bacteremia within selective digestive decontamination studies: a meta-analysis

    Get PDF
    corecore