2,403 research outputs found

    S-matrix for s-wave gravitational scattering

    Get PDF
    In the s-wave approximation the 4D Einstein gravity with scalar fields can be reduced to an effective 2D dilaton gravity coupled nonminimally to the matter fields. We study the leading order (tree level) vertices. The 4-particle matrix element is calculated explicitly. It is interpreted as scattering with formation of a virtual black hole state. As one novel feature we predict the gravitational decay of s-waves.Comment: 9 pages, 1 figure, added clarifying comments in the introduction, the conclusion, and the virtual black hole sectio

    Obtaining a light-like planar gauge

    Full text link
    In the usual and current understanding of planar gauge choices for Abelian and non Abelian gauge fields, the external defining vector nμn_\mu can either be space-like (n20n^20) but not light-like (n2=0n^2=0). In this work we propose a light-like planar gauge that consists in defining a modified gauge-fixing term, LGF\cal{L}_{GF}, whose main characteristic is a two-degree violation of Lorentz covariance arising from the fact that four-dimensional space-time spanned entirely by null vectors as basis necessitates two light-like vectors, namely nμn_\mu and its dual mμm_\mu, with n2=m2=0,nm0n^2=m^2=0, n\cdot m\neq 0, say, e.g. normalized to nm=2n\cdot m=2.Comment: 9 page

    Conformal anomaly in 2d dilaton-scalar theory

    Full text link
    The discrepancy between the anomaly found by Bousso and Hawking (hep-th/9705236) and that of other workers is explained by the omission of a zero mode contribution to the effective action.Comment: 5 pages, JyTeX. References added with brief remar

    Should the IRS Continue to Deny Banks the Benefits of the LLC Structure

    Get PDF

    Absolute conservation law for black holes

    Get PDF
    In all 2d theories of gravity a conservation law connects the (space-time dependent) mass aspect function at all times and all radii with an integral of the matter fields. It depends on an arbitrary constant which may be interpreted as determining the initial value together with the initial values for the matter field. We discuss this for spherically reduced Einstein-gravity in a diagonal metric and in a Bondi-Sachs metric using the first order formulation of spherically reduced gravity, which allows easy and direct fixations of any type of gauge. The relation of our conserved quantity to the ADM and Bondi mass is investigated. Further possible applications (ideal fluid, black holes in higher dimensions or AdS spacetimes etc.) are straightforward generalizations.Comment: LaTex, 17 pages, final version, to appear in Phys. Rev.

    Advanced microwave radiometer antenna system study

    Get PDF
    The practicability of a multi-frequency antenna for spaceborne microwave radiometers was considered in detail. The program consisted of a comparative study of various antenna systems, both mechanically and electronically scanned, in relation to specified design goals and desired system performance. The study involved several distinct tasks: definition of candidate antennas that are lightweight and that, at the specified frequencies of 5, 10, 18, 22, and 36 GHz, can provide conical scanning, dual linear polarization, and simultaneous multiple frequency operation; examination of various feed systems and phase-shifting techniques; detailed analysis of several key performance parameters such as beam efficiency, sidelobe level, and antenna beam footprint size; and conception of an antenna/feed system that could meet the design goals. Candidate antennas examined include phased arrays, lenses, and optical reflector systems. Mechanical, electrical, and performance characteristics of the various systems were tabulated for ease of comparison

    Universal conservation law and modified Noether symmetry in 2d models of gravity with matter

    Get PDF
    It is well-known that all 2d models of gravity---including theories with nonvanishing torsion and dilaton theories---can be solved exactly, if matter interactions are absent. An absolutely (in space and time) conserved quantity determines the global classification of all (classical) solutions. For the special case of spherically reduced Einstein gravity it coincides with the mass in the Schwarzschild solution. The corresponding Noether symmetry has been derived previously by P. Widerin and one of the authors (W.K.) for a specific 2d model with nonvanishing torsion. In the present paper this is generalized to all covariant 2d theories, including interactions with matter. The related Noether-like symmetry differs from the usual one. The parameters for the symmetry transformation of the geometric part and those of the matterfields are distinct. The total conservation law (a zero-form current) results from a two stage argument which also involves a consistency condition expressed by the conservation of a one-form matter ``current''. The black hole is treated as a special case.Comment: 3

    General Two-Dimensional Supergravity from Poisson Superalgebras

    Get PDF
    We provide the geometric actions for most general N=1 supergravity in two spacetime dimensions. Our construction implies an extension to arbitrary N. This provides a supersymmetrization of any generalized dilaton gravity theory or of any theory with an action being an (essentially) arbitrary function of curvature and torsion. Technically we proceed as follows: The bosonic part of any of these theories may be characterized by a generically nonlinear Poisson bracket on a three-dimensional target space. In analogy to a given ordinary Lie algebra, we derive all possible N=1 extensions of any of the given Poisson (or W-) algebras. Using the concept of graded Poisson Sigma Models, any extension of the algebra yields a possible supergravity extension of the original theory, local Lorentz and super-diffeomorphism invariance follow by construction. Our procedure automatically restricts the fermionic extension to the minimal one; thus local supersymmetry is realized on-shell. By avoiding a superfield approach we are also able to circumvent in this way the introduction of constraints and their solution. For many well-known dilaton theories different supergravity extensions are derived. In generic cases their field equations are solved explicitly.Comment: 70 pages, LaTeX, AMSmath, BibTe

    PPARs in Alzheimer's Disease

    Get PDF
    Peroxisome proliferator-activated receptors (PPARs) are well studied for their peripheral physiological and pathological impact, but they also play an important role for the pathogenesis of various disorders of the central nervous system (CNS) like multiple sclerosis, amyotrophic lateral sclerosis, Alzheimer's, and Parkinson's disease. The observation that PPARs are able to suppress the inflammatory response in peripheral macrophages and in several models of human autoimmune diseases lead to the idea that PPARs might be beneficial for CNS disorders possessing an inflammatory component. The neuroinflammatory response during the course of Alzheimer's disease (AD) is triggered by the neurodegeneration and the deposition of the β-amyloid peptide in extracellular plaques. Nonsteroidal anti-inflammatory drugs (NSAIDs) have been considered to delay the onset and reduce the risk to develop Alzheimer's disease, while they also directly activate PPARγ. This led to the hypothesis that NSAID protection in AD may be partly mediated by PPARγ. Several lines of evidence have supported this hypothesis, using AD-related transgenic cellular and animal models. Stimulation of PPARγ receptors by synthetic agonist (thiazolidinediones) inducing anti-inflammatory, anti-amyloidogenic, and insulin sensitising effects may account for the observed effects. Several clinical trials already revealed promising results using PPAR agonists, therefore PPARs represent an attractive therapeutic target for the treatment of AD
    corecore