59 research outputs found

    Unlocking Pharmacological and Therapeutic Potential of Hyacinth Bean (<em>Lablab purpureus</em> L.): Role of OMICS Based Biology, Biotic and Abiotic Elicitors

    Get PDF
    Hyacinth bean also known as Indian bean is multipurpose legume crops consumed both as food by humans and as forage by animals. Being a rich source of protein, it also produces distinct secondary metabolites such as flavonoids, phenols and tyrosinase which not only help strengthened plant’s own innate immunity against abiotic/biotrophic attackers but also play important therapeutic role in the treatment of various chronic diseases. However, despite its immense therapeutic and nutritional attributes in strengthening food, nutrition and therapeutic security in many developing countries, it is still considered as an “orphan crop” for unravelling its genetic potential and underlying molecular mechanisms for enhancing secondary metabolite production. Several lines of literatures have well documented the use of OMICS based techniques and biotic and abiotic elicitors for stimulating secondary metabolite production particularly in model as well as in few economically important crops. However, only limited reports have described their application for stimulating secondary metabolite production in underutilised crops. Therefore, the present chapter will decipher different dimensions of multi-omics tools and their integration with other conventional techniques (biotic and abiotic elicitors) for unlocking hidden genetic potential of hyacinth bean for elevating the production of secondary metabolites having pharmaceutical and therapeutic application. Additionally, the study will also provide valuable insights about how these advance OMICS tools can be successfully exploited for accelerating functional genomics and breeding research for unravelling their hidden pharmaceutical and therapeutic potential thereby ensuring food and therapeutic security for the betterment of mankind

    Nutritional and antioxidant properties and their inter-relationship with pod characters in an under-exploited vegetable, Indian bean (Lablab purpureus)

    Get PDF
    Indian bean [Lablab purpureus (L.) Sweet] is an underexploited nutritious legume vegetable found in tropical regions of Asia and Africa. The nutritional and anti-oxidant properties of 21 pole type Indian bean genotypes were analysed in edible pods in terms of protein, sugar, chlorophyll, carotenoids, phenol, and proline contents. The analyses revealed a significant genotypic variation in the level of protein (102-635.6 mg), sugar (0.188-1.11 mg), chlorophyll (0.121-0.716 mg), phenol (1.7-9.67 mg), proline (0.02-7.06 µg) and carotenoids (0.04-0.231 mg). Estimation of genetic variability parameters revealed that chlorophyll a and non-reducing sugar had high estimates of PCV than GCV, whereas, protein, phenol, chlorophyll b, carotenoid, reducing sugar and non-reducing sugar had moderately high PCV than GCV indicating that such variability could be exploited for successful identification of genotypes for the specific biochemical property. In general, heritability estimates were recorded to be high for all the characters studied except chlorophyll a and reducing sugar. High heritability coupled with high genetic advance as percentage of mean was observed for proline, non-reducing sugar, chlorophyll a, carotenoidd, protein and phenol. Since such traits are controlled by additive genes, more importance need to be given to these traits while selecting the breeding lines rich in nutritional qualities

    Myeloid Cells in Multiple Sclerosis

    Get PDF
    In steady state, the central nervous system (CNS) houses a variety of myeloid cells, such as microglia, non-parenchymal macrophages and dendritic cells (DCs), and granulocytes. Most of these cells enter the CNS during embryogenesis and are crucial for proper CNS development. In adulthood, these resident myeloid cells exert crucial homeostatic functions. In neuroinflammatory conditions, like multiple sclerosis (MS), both lymphoid and myeloid cells from the periphery infiltrate the tissue and cause local damage. Although lymphocytes are undeniably important players in MS, CNS-resident and CNS-infiltrating myeloid cells have recently gained much-deserved attention for their roles in disease progression. Here, we will review significant advances made in recent years delineating myeloid cell functions within the CNS both in homeostasis and MS. We will also discuss how these cells are affected by currently employed therapeutics for MS patients

    Gesture Recognition for Enhancing Human Computer Interaction

    Get PDF
    Gesture recognition is critical in human-computer communication. As observed, a plethora of current technological developments are in the works, including biometric authentication, which we see all the time in our smartphones. Hand gesture focus, a frequent human-computer interface in which we manage our devices by presenting our hands in front of a webcam, can benefit people of different backgrounds. Some of the efforts in human-computer interface include voice assistance and virtual mouse implementation with voice commands, fingertip recognition and hand motion tracking based on an image in a live video. Human Computer Interaction (HCI), particularly vision-based gesture and object recognition, is becoming increasingly important. Hence, we focused to design and develop a system for monitoring fingers using extreme learning-based hand gesture recognition techniques. Extreme learning helps in quickly interpreting the hand gestures with improved accuracy which would be a highly useful in the domains like healthcare, financial transactions and global busines

    Metabolomics-Driven Mining of Metabolite Resources:Applications and Prospects for Improving Vegetable Crops

    Get PDF
    Vegetable crops possess a prominent nutri-metabolite pool that not only contributes to the crop performance in the fields, but also offers nutritional security for humans. In the pursuit of identifying, quantifying and functionally characterizing the cellular metabolome pool, biomolecule separation technologies, data acquisition platforms, chemical libraries, bioinformatics tools, databases and visualization techniques have come to play significant role. High-throughput metabolomics unravels structurally diverse nutrition-rich metabolites and their entangled interactions in vegetable plants. It has helped to link identified phytometabolites with unique phenotypic traits, nutri-functional characters, defense mechanisms and crop productivity. In this study, we explore mining diverse metabolites, localizing cellular metabolic pathways, classifying functional biomolecules and establishing linkages between metabolic fluxes and genomic regulations, using comprehensive metabolomics deciphers of the plant’s performance in the environment. We discuss exemplary reports covering the implications of metabolomics, addressing metabolic changes in vegetable plants during crop domestication, stage-dependent growth, fruit development, nutri-metabolic capabilities, climatic impacts, plant-microbe-pest interactions and anthropogenic activities. Efforts leading to identify biomarker metabolites, candidate proteins and the genes responsible for plant health, defense mechanisms and nutri-rich crop produce are documented. With the insights on metabolite-QTL (mQTL) driven genetic architecture, molecular breeding in vegetable crops can be revolutionized for developing better nutritional capabilities, improved tolerance against diseases/pests and enhanced climate resilience in plants

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Not Available

    No full text
    Not AvailablePresent study was conducted to explore the role of exogenous salicylic acid (SA), sodium nitroprusside (SNP), abscisic acid ,(ABA) and proline (PRO) in mitigating high-temperature (HT) induced oxidative stress in different Lablab purpureus L. cultivars. The attempt was made to examine whether these phytohormones, when applied exogenously, were able to regulate plant morpho-physiological behavior by modulating genes and proteins involved in antioxidant defense system. The HT stress induced membrane damage, degraded chlorophyll, generated redox metabolites and significantly reduced growth and biomass in all the cultivars. Among all the four treatments, foliar application of SA and SNP were most effective in the regulation of growth and physiological processes of the cultivars compared to ABA and PRO applications. Thus, signifying the protective role of SA and SNP in mitigation of HT induced oxidative stress and conferring HT stress tolerance in the cultivars. Gene expression and leaf proteome analysis revealed that these phytohormones were also involved in regulation of defense related gene expression, stress inducible proteins and de novo synthesis of specific proteins under HT stress.The experimental findings depict that foliar applications of SA and SNP enhances HT stress tolerance in lablab cultivars by modulating antioxidant defense system and by regulating bio-physical growth more effectively as compared to ABA and PRO application.Not Availabl

    Not Available

    No full text
    Not AvailableA continuous increase in global mean temperature has become a major challenge for present and future agricultural productivity at worldwide. Therefore, present study was conducted to assess the impact of high temperature (HT) stress on seven Lablab purpureus L. inbred lines along with two parents viz, Arka Vijay and Kashi Khushal as check, to evaluate any genotypic variations exist among inbred lines for HT stress tolerance. The results show that HT induced higher levels of foliar injury in all inbred lines that significantly increased membrane damage, declined photosynthetic pigment contents and redox metabolites which ultimately led to the reduction in their growth and yield. However, among all the inbred lines used, three inbred lines viz, VRBSEM-1, VRBSEM-3 and VRBSEM-15 showed comparatively enhanced enzymatic and non-enzymatic antioxidants with increased secondary metabolites content as well as improved growth and yield related traits, thereby confirming that these inbred lines were efficiently utilizing reactive oxygen species as signaling molecule which regulated their growth and developmental process under HT stress. DNA fingerprinting analysis through ISSR and RAPD markers also established the genetic relationships among the inbred lines that coincides with above physiological and biochemical characterization, and grouped VRBSEM-1 & VRBSEM-3 and VRBSEM-9 & VRBSEM-15 inbred lines into one group and VRBSEM-8, VRBSEM-10, VRBSEM-14 into another group. The experimental findings clearly depict that all the cultivars of L. purpureus L. showed differential response to HT stress. Inbred lines with enhanced biochemical and physiological traits can be crossed to high yielding agronomical elite materials which can help plant breeders in selecting resistant cultivars for the area experiencing high temperature during the cropping season.Not Availabl

    Not Available

    No full text
    Not AvailableIndian bean [Lablab purpureus (L.) Sweet] is an underexploited nutritious legume vegetable found in tropical regions of Asia and Africa. The nutritional and anti-oxidant properties of 21 pole type Indian bean genotypes were analysed in edible pods in terms of protein, sugar, chlorophyll, carotenoids, phenol, and proline contents. The analyses revealed a significant genotypic variation in the level of protein (102-635.6 mg), sugar (0.188-1.11 mg), chlorophyll (0.121-0.716 mg), phenol (1.7-9.67 mg), proline (0.02-7.06 μg) and carotenoids (0.04-0.231 mg).Estimation of genetic variability parameters revealed that chlorophyll a and non-reducing sugar had high estimates of PCV than GCV, whereas, protein, phenol, chlorophyll b, carotenoid, reducing sugar and non-reducing sugar had moderately high PCV than GCV indicating that such variability could be exploited for successful identification of genotypes for the specific biochemical property. In general, heritability estimates were recorded to be high for all the characters studied except chlorophyll a and reducing sugar. High heritability coupled with high genetic advance as percentage of mean was observed for proline, non-reducing sugar, chlorophyll a, carotenoidd, protein and phenol. Since such traits are controlled by additive genes, more importance need to be given to these traits while selecting the breeding lines rich in nutritional qualities.Not Availabl

    Not Available

    No full text
    Not AvailableHyacinth bean is an important traditional plant with substantial medicinal value. Being imperative, it is still less explored crop on genomic and transcriptomic scale that has indexed it as an “orphan” crop for its genome revolution. Among different crop legumes such as pigeon pea, chickpea, cowpea, soybean and common bean, hyacinth bean also serves as a significant source of nutrition for both tropical and temperate regions and execute an imperative function in fixing biological nitrogen in agriculture. Nonetheless, the productivity of hyacinth bean is restrained due to environmental and biotic cues. Thus, understanding of the genomic functions and identification of probable genes/proteins for major agronomic traits through transcriptomic approaches has become imperative to improve stress tolerance in hyacinth bean. For understanding the plant stress tolerance mechanisms, the deployment of functional genomics approaches viz., proteomics and metabolomics have become imperious in breeding programs in developing countries. These approaches have been successfully used in other legume crops to create protein reference maps and their exploitation through comparative approaches can greatly enhance the research and understanding of hyacinth bean biological processes to changing environmental conditions. In this review, emerging epigenomics, proteomics, metabolomics and phenomics approaches and their achievements both in model/crop legumes are discussed. Additionally, the review also provides an overview of the applications of advanced proteomics, metabolomics and next-generation sequencing technologies in the discovery of candidate biomarkers for the development of agronomically refined hyacinth bean which may further ensure food and nutritional security under adverse climacteric conditions in developing countries.Not Availabl
    corecore