4,079 research outputs found
Light Sneutrino Dark Matter at the LHC
In supersymmetric (SUSY) models with Dirac neutrino masses, a weak-scale
trilinear A-term that is not proportional to the small neutrino Yukawa
couplings can induce a sizable mixing between left and right-handed sneutrinos.
The lighter sneutrino mass eigenstate can hence become the lightest SUSY
particle (LSP) and a viable dark matter candidate. In particular, it can be an
excellent candidate for light dark matter with mass below ~10 GeV. Such a light
mixed sneutrino LSP has a dramatic effect on SUSY signatures at the LHC, as
charginos decay dominantly into the light sneutrino plus a charged lepton, and
neutralinos decay invisibly to a neutrino plus a sneutrino. We perform a
detailed study of the LHC potential to resolve the light sneutrino dark matter
scenario by means of three representative benchmark points with different
gluino and squark mass hierarchies. We study in particular the determination of
the LSP (sneutrino) mass from cascade decays involving charginos, using the mT2
variable. Moreover, we address measurements of additional invisible sparticles,
in our case the lightest neutralino, and the question of discrimination against
the MSSM.Comment: 25 pages, 16 figure
Bio-nanotechnology application in wastewater treatment
The nanoparticles have received high interest in the field of medicine and water purification, however, the nanomaterials produced by chemical and physical methods are considered hazardous, expensive, and leave behind harmful substances to the environment. This chapter aimed to focus on green-synthesized nanoparticles and their medical applications. Moreover, the chapter highlighted the applicability of the metallic nanoparticles (MNPs) in the inactivation of microbial cells due to their high surface and small particle size. Modifying nanomaterials produced by green-methods is safe, inexpensive, and easy. Therefore, the control and modification of nanoparticles and their properties were also discussed
Electrical behaviour, characteristics and properties of anodic aluminium oxide films coloured by nickel electrodeposition
Porous anodic films on 1050 aluminium substrate were coloured by AC electrodeposition of nickel. Several experiments were performed at different deposition voltages and nickel concentrations in the electrolyte in order to correlate the applied electrical power to the electrical behaviour, as well as the characteristics and properties of the coatings. The content of nickel inside the coatings reached 1.67 g/m2, depending on the experimental conditions. According to the applied AC voltage in comparison with the threshold voltage Ut, the coating either acted only as a capacitor when U\Ut and, when U[Ut, the behaviour during the anodic and cathodic parts of the power sine wave was different. In particular, due to the semi-conducting characteristics of the barrier layer, additional oxidation of the aluminium substrate occurred during the anodic part of the electrical signal, whilst metal deposition (and solvent reduction) occurred during the cathodic part; these mechanisms correspond to the blocked and pass directions of the barrier layer/electrolyte junction, respectively
Tamsulosin-induced severe hypotension during general anesthesia: a case report.
Introduction: Tamsulosin, a selective alpha1-adrenergic receptor (alpha1-AR) antagonist, is a widely prescribed first-line agent for benign prostatic hypertrophy (BPH). Its interaction with anesthetic agents has not been described. Case Presentation: We report the case of 54-year-old Asian man undergoing elective left thyroid lobectomy. The only medication the Patient was taking was tamsulosin 0.4 mg for the past year for BPH. He developed persistent hypotension during the maintenance phase of anesthesia while receiving oxygen, nitrous oxide and 1% isoflurane. The hypotension could have been attributable to a possible interaction between inhalational anesthetic and tamsulosin. Conclusion: Vigilance for unexpected hypotension is important in surgical Patients who are treated with selective alpha1-AR blockers. If hypotension occurs, vasopressors that act directly on adrenergic receptors could be more effective
Health promoting potential of herbal teas and tinctures from Artemisia campestris subsp maritima: from traditional remedies to prospective products
This work explored the biotechnological potential of the medicinal halophyte Artemisia campestris subsp. maritima (dune wormwood) as a source of health promoting commodities. For that purpose, infusions, decoctions and tinctures were prepared from roots and aerial-organs and evaluated for in vitro antioxidant, anti-diabetic and tyrosinase-inhibitory potential, and also for polyphenolic and mineral contents and toxicity. The dune wormwood extracts had high polyphenolic content and several phenolics were identified by ultra-high performance liquid chromatography-photodiode array-mass-spectrometry (UHPLC-PDA-MS). The main compounds were quinic, chlorogenic and caffeic acids, coumarin sulfates and dicaffeoylquinic acids; several of the identified phytoconstituents are here firstly reported in this A. campestris subspecies. Results obtained with this plant's extracts point to nutritional applications as mineral supplementary source, safe for human consumption, as suggested by the moderate to low toxicity of the extracts towards mammalian cell lines. The dune wormwood extracts had in general high antioxidant activity and also the capacity to inhibit a-glucosidase and tyrosinase. In summary, dune wormwood extracts are a significant source of polyphenolic and mineral constituents, antioxidants and a-glucosidase and tyrosinase inhibitors, and thus, relevant for different commercial segments like the pharmaceutical, cosmetic and/or food industries.FCT - Foundation for Science and Technology [CCMAR/Multi/04326/2013]; Portuguese National Budget; FCT [IF/00049/2012, SFRH/BD/94407/2013]; Research Foundation - Flanders (FWO) [12M8315N]info:eu-repo/semantics/publishedVersio
Composite GUTs: models and expectations at the LHC
We investigate grand unified theories (GUTs) in scenarios where electroweak
(EW) symmetry breaking is triggered by a light composite Higgs, arising as a
Nambu-Goldstone boson from a strongly interacting sector. The evolution of the
standard model (SM) gauge couplings can be predicted at leading order, if the
global symmetry of the composite sector is a simple group G that contains the
SM gauge group. It was noticed that, if the right-handed top quark is also
composite, precision gauge unification can be achieved. We build minimal
consistent models for a composite sector with these properties, thus
demonstrating how composite GUTs may represent an alternative to supersymmetric
GUTs. Taking into account the new contributions to the EW precision parameters,
we compute the Higgs effective potential and prove that it realizes
consistently EW symmetry breaking with little fine-tuning. The G group
structure and the requirement of proton stability determine the nature of the
light composite states accompanying the Higgs and the top quark: a coloured
triplet scalar and several vector-like fermions with exotic quantum numbers. We
analyse the signatures of these composite partners at hadron colliders:
distinctive final states contain multiple top and bottom quarks, either alone
or accompanied by a heavy stable charged particle, or by missing transverse
energy.Comment: 55 pages, 13 figures, final version to be published in JHE
Holographic flows and thermodynamics of Polyakov loop impurities
We study holographic probes dual to heavy quark impurities interpo- lating between fundamental and symmetric/antisymmetric tensor representations in strongly coupled N = 4 supersymmetric gauge theory. These correspond to non- conformal D3- and D5-brane probe embeddings in AdS_5 × S^5 exhibiting flows on their world-volumes. By examining the asymptotic regimes of the embeddings and the one-point function of static fields sourced by the boundary impurity, we con- clude that the D5-brane embedding describes the screening of fundamental quarks in the UV into an antisymmetric source in the IR, whilst the non-conformal, D3- brane solution interpolates between the symmetric representation in the UV and fundamental sources in the IR. The D5-brane embeddings exhibit nontrivial ther- modynamics with multiple branches of solutions, whilst the thermal analogue of the interpolating D3-brane solution does not appear to exist
The ADAMTS (A Disintegrin and Metalloproteinase with Thrombospondin motifs) family
The ADAMTS (A Disintegrin and Metalloproteinase with Thrombospondin motifs) enzymes are secreted, multi-domain matrix-associated zinc metalloendopeptidases that have diverse roles in tissue morphogenesis and patho-physiological remodeling, in inflammation and in vascular biology. The human family includes 19 members that can be sub-grouped on the basis of their known substrates, namely the aggrecanases or proteoglycanases (ADAMTS1, 4, 5, 8, 9, 15 and 20), the procollagen N-propeptidases (ADAMTS2, 3 and 14), the cartilage oligomeric matrix protein-cleaving enzymes (ADAMTS7 and 12), the von-Willebrand Factor proteinase (ADAMTS13) and a group of orphan enzymes (ADAMTS6, 10, 16, 17, 18 and 19). Control of the structure and function of the extracellular matrix (ECM) is a central theme of the biology of the ADAMTS, as exemplified by the actions of the procollagen-N-propeptidases in collagen fibril assembly and of the aggrecanases in the cleavage or modification of ECM proteoglycans. Defects in certain family members give rise to inherited genetic disorders, while the aberrant expression or function of others is associated with arthritis, cancer and cardiovascular disease. In particular, ADAMTS4 and 5 have emerged as therapeutic targets in arthritis. Multiple ADAMTSs from different sub-groupings exert either positive or negative effects on tumorigenesis and metastasis, with both metalloproteinase-dependent and -independent actions known to occur. The basic ADAMTS structure comprises a metalloproteinase catalytic domain and a carboxy-terminal ancillary domain, the latter determining substrate specificity and the localization of the protease and its interaction partners; ancillary domains probably also have independent biological functions. Focusing primarily on the aggrecanases and proteoglycanases, this review provides a perspective on the evolution of the ADAMTS family, their links with developmental and disease mechanisms, and key questions for the future
The holistic phase model of early adult crisis
The objective of the current study was to explore the structural, temporal and experiential manifestations of crisis episodes in early adulthood, using a holistic-systemic theoretical framework. Based on an analysis of 50 interviews with individuals about a crisis episode between the ages of 25 and 35, a holistic model was developed. The model comprises four phases: (1) Locked-in, (2) Separation/Time-out, (3) Exploration and (4) Rebuilding, which in turn have characteristic features at four levels—person-in-environment, identity, motivation and affect-cognition. A crisis starts out with a commitment at work or home that has been made but is no longer desired, and this is followed by an emotionally volatile period of change as that commitment is terminated. The positive trajectory of crisis involves movement through an exploratory period towards active rebuilding of a new commitment, but ‘fast-forward’ and ‘relapse’ loops can interrupt Phases 3 and 4 and make a positive resolution of the episode less likely. The model shows conceptual links with life stage theories of emerging adulthood and early adulthood, and it extends current understandings of the transitional developmental challenges that young adults encounter
Ferroelectricity induced by interatomic magnetic exchange interaction
Multiferroics, where two or more ferroic order parameters coexist, is one of
the hottest fields in condensed matter physics and materials science[1-9].
However, the coexistence of magnetism and conventional ferroelectricity is
physically unfavoured[10]. Recently several remedies have been proposed, e.g.,
improper ferroelectricity induced by specific magnetic[6] or charge orders[2].
Guiding by these theories, currently most research is focused on frustrated
magnets, which usually have complicated magnetic structure and low magnetic
ordering temperature, consequently far from the practical application. Simple
collinear magnets, which can have high magnetic transition temperature, have
never been considered seriously as the candidates for multiferroics. Here, we
argue that actually simple interatomic magnetic exchange interaction already
contains a driving force for ferroelectricity, thus providing a new microscopic
mechanism for the coexistence and strong coupling between ferroelectricity and
magnetism. We demonstrate this mechanism by showing that even the simplest
antiferromagnetic (AFM) insulator MnO, can display a magnetically induced
ferroelectricity under a biaxial strain
- …
