1,619 research outputs found

    Petrology and tectonic development of supracrustal sequence of Kerala Khondalite Belt, Southern India

    Get PDF
    The granulite terrain of southern India, of which the Kerala Khondalite belt (KKB) is a part, is unique in exposing crustal sections with arrested charnockite growth in different stages of transformation and in varied lithological association. The KKB with rocks of surficial origin and incipient charnockite development, poses several problems relating to the tectonics of burial of vast area and mechanisms involved in expelling initial H2O (causes of dryness) for granulite facies metamorphism. It is possible to infer the following sequence of events based on the field and laboratory studies: (1) derivation of protoliths of KKB from granitic uplands and deposition in fault bounded basin (cratonic rift); (2) subhorizontal deep burial of sediments; (3) intense deformation of infra and supracrustal rocks; (4) early granulite facies metamorphism predating F sub 2 - loss of primary structure in sediments and formation of charnockites from amphibole bearing gneisses and khondalites from pelites; (5) migmatisation and deformation of metasediments and gneisses; (6) second event of charnockite formation probably aided by internal CO2 build-up; and (7) isothermal uplift, entrapment of late CO2 and mixed CO2-H2O fluids, formation of second generation cordierites and cordierite symplectites

    Water activities in the Kerala Khondalite Belt

    Get PDF
    The author and colleagues presented their determinations of water activities in various granulite-facies rocks of the Kerala Khondalite Belt. Using mineral equilibria, thermodynamic data, and assumed geopressure-geotemperature conditions of 5.5 kbar and 750 C, they calculated uniformly low a(H2O) values of about 0.27 over a large geographic region. They suggested that these conditions were produced by the presence of abundant CO2-rich fluids, derived either from deeper levels or from metamorphic reactions involving graphite

    The propensity of molecules to spatially align in intense light fields

    Get PDF
    The propensity of molecules to spatially align along the polarization vector of intense, pulsed light fields is related to readily-accessible parameters (molecular polarizabilities, moment of inertia, peak intensity of the light and its pulse duration). Predictions can now be made of which molecules can be spatially aligned, and under what circumstances, upon irradiation by intense light. Accounting for both enhanced ionization and hyperpolarizability, it is shown that {\it all} molecules can be aligned, even those with the smallest static polarizability, when subjected to the shortest available laser pulses (of sufficient intensity).Comment: 8 pages, 4 figures, to be submitted to PR

    Single and multiple ionization of CS<SUB>2</SUB> in intense laser fields: wavelength dependence and energetics

    Get PDF
    Single and multiple ionization of carbon disulphide by intense picosecond laser fields is the subject of this paper. Mass spectra were measured at five wavelengths from the infrared to the ultraviolet. In terms of the Keldysh adiabaticity parameter, we cover both the multiphoton and the tunnelling regimes. The dynamics of the dissociative ionization process is shown to be dependent upon the regime in which the laser - molecule interaction occurs. Resonances, which may be possible and which could access electronically excited states of the molecule, appear to play little part in the dynamics. Ion abundances have been measured as a function of laser intensity in the tunnelling regime; no correlation is found between measured values of saturation intensity and zero-field molecular properties such as dissociation or ionization thresholds and ionization energies. In addition, the covariance mapping technique is applied to study the dissociation dynamics of multiply charged ions at 1064 nm. The measured values of kinetic energy release accompanying formation of fragment ion-pairs are very much less than those measured in single-photon and electron-impact experiments. It is postulated that this reduction may be a manifestation of the extent to which potential energy surfaces of CS24+ ions are `flattened' by the action of the intense, linearly polarized laser radiation, akin to the bond-softening process that has been observed in the case of diatomic molecules. Our observations indicate that distortion of molecular potential energy surfaces may be the dominating feature in intense laser - molecule interactions

    Measurements of high energy density electrons via observation of Cherenkov radiation

    Full text link
    Copyright 2010 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. The following article appeared in Physics of Plasmas, 17(5), 056306, 2010 and may be found at http://dx.doi.org/10.1063/1.334637

    Direct, absolute, and in situ measurement of fast electron transport via cherenkov emission

    Get PDF
    We present direct measurements of the absolute energy distribution of relativistic electrons generated in intense, femtosecond laser interaction with a solid. Cherenkov emission radiated by these electrons in a novel prism target is spectrally dispersed to obtain yield and energy distribution of electrons simultaneously. A crucial advance is the observation of high density electron current as predicted by particle simulations and its transport as it happens inside the target. In addition, the strong sheath potential present at the rear side of the target is inferred from a comparison of the electron spectra derived from Cherenkov light observation with that from a magnet spectrometer

    Controlling femtosecond-laser-driven shock-waves in hot, dense plasma

    Get PDF
    Ultrafast pump-probe reflectometry and Doppler spectrometry of a supercritical density plasma layer excited by 1017-1018 W/cm2 intensity, 30 fs, and 800 nm laser pulses reveal the interplay of laser intensity contrast and inward shock wave strength. The inward shock wave velocity increases with an increase in laser intensity contrast. This trend is supported by simulations as well as by a separate independent experiment employing an external prepulse to control the inward motion of the shock wave. This kind of cost-effective control of shock wave strength using femtosecond pulses could open up new applications in medicine, science, and engineering

    Efficient transport of femtosecond laser-generated fast electrons in a millimeter thick graphite

    Get PDF
    We demonstrate efficient transport of fast electrons generated by ∼1018 W/cm2, 30 fs, 800 nm laser pulses through a millimeter thick polycrystalline graphite. Measurements of hot electron spectra at the front side of the graphite target show enhancement in terms of the electron flux and temperature, while the spectra at the rear confirm the ability of the graphite to transport large electron currents over a macroscopic distance of a millimeter. In addition, protons of keV energies are observed at the rear side of such a macroscopically thick target and attributed to the target-normal-sheath-acceleration mechanism

    Arithmetically Cohen-Macaulay Bundles on complete intersection varieties of sufficiently high multidegree

    Full text link
    Recently it has been proved that any arithmetically Cohen-Macaulay (ACM) bundle of rank two on a general, smooth hypersurface of degree at least three and dimension at least four is a sum of line bundles. When the dimension of the hypersurface is three, a similar result is true provided the degree of the hypersurface is at least six. We extend these results to complete intersection subvarieties by proving that any ACM bundle of rank two on a general, smooth complete intersection subvariety of sufficiently high multi-degree and dimension at least four splits. We also obtain partial results in the case of threefolds.Comment: 15 page
    corecore