1,213 research outputs found

    Intrinsic gap and exciton condensation in the nu_T=1 bilayer system

    Full text link
    We investigate the quasiparticle excitation of the bilayer quantum Hall (QH) system at total filling factor νT=1\nu_{\mathrm{T}} = 1 in the limit of negligible interlayer tunneling under tilted magnetic field. We show that the intrinsic quasiparticle excitation is of purely pseudospin origin and solely governed by the inter- and intra-layer electron interactions. A model based on exciton formation successfully explains the quantitative behavior of the quasiparticle excitation gap, demonstrating the existence of a link between the excitonic QH state and the composite fermion liquid. Our results provide a new insight into the nature of the phase transition between the two states.Comment: 4 pages, 3 figure

    Intrinsic and extrinsic decay of edge magnetoplasmons in graphene

    Full text link
    We investigate intrinsic and extrinsic decay of edge magnetoplasmons (EMPs) in graphene quantum Hall (QH) systems by high-frequency electronic measurements. From EMP resonances in disk shaped graphene, we show that the dispersion relation of EMPs is nonlinear due to interactions, giving rise to intrinsic decay of EMP wavepacket. We also identify extrinsic dissipation mechanisms due to interaction with localized states in bulk graphene from the decay time of EMP wavepackets. We indicate that, owing to the unique linear and gapless band structure, EMP dissipation in graphene can be lower than that in GaAs systems.Comment: 5 page

    Anisotropy of Magnetoresistance Hysteresis around the ν=2/3\nu=2/3 Quantum Hall State in Tilted Magnetic Field

    Full text link
    We present an anisotropy of the hysteretic transport around the spin transition point at Landau level filling factor ν=2/3\nu=2/3 in tilted magnetic field. When the direction of the in-plane component of the magnetic field B∥B_{\parallel} is normal to the probe current II, a strong hysteretic transport due to the current-induced nuclear spin polarization occurs. When B∥B_{\parallel} is parallel to II, on the other hand, the hysteresis almost disappears. We also demonstrate that the nuclear spin-lattice relaxation rate T1−1T_{1}^{-1} at the transition point increases with decreasing angle between the directions of B∥B_{\parallel} and II. These results suggest that the morphology of electron spin domains around ν=2/3\nu =2/3 is affected by the current direction.Comment: 4 pages, 4 figure

    Magnetic control of particle-injection in plasma based accelerators

    Get PDF
    The use of an external transverse magnetic field to trigger and to control electron self-injection in laser- and particle-beam driven wakefield accelerators is examined analytically and through full-scale particle-in-cell simulations. A magnetic field can relax the injection threshold and can be used to control main output beam features such as charge, energy, and transverse dynamics in the ion channel associated with the plasma blowout. It is shown that this mechanism could be studied using state-of-the-art magnetic fields in next generation plasma accelerator experiments.Comment: 10 pages, 3 figure

    Simultaneous Excitation of Spins and Pseudospins in the Bilayer ν=1\nu=1 Quantum Hall State

    Full text link
    The tilting angular dependence of the energy gap was measured in the bilayer quantum Hall state at the Landau level filling ν=1\nu=1 by changing the density imbalance between the two layers. The observed gap behavior shows a continuous transformation from the bilayer balanced density state to the monolayer state. Even a sample with 33 K tunneling gap shows the same activation energy anomaly reported by Murphy {\it et al.}. We discuss a possible relation between our experimental results and the quantum Hall ferromagnet of spins and pseudospins.Comment: 4 pages, 4 figure
    • …
    corecore