20 research outputs found

    Allele-specific copy number analysis of tumor samples with aneuploidy and tumor heterogeneity

    Get PDF
    We describe a bioinformatic tool, Tumor Aberration Prediction Suite (TAPS), for the identification of allele-specific copy numbers in tumor samples using data from Affymetrix SNP arrays. It includes detailed visualization of genomic segment characteristics and iterative pattern recognition for copy number identification, and does not require patient-matched normal samples. TAPS can be used to identify chromosomal aberrations with high sensitivity even when the proportion of tumor cells is as low as 30%. Analysis of cancer samples indicates that TAPS is well suited to investigate samples with aneuploidy and tumor heterogeneity, which is commonly found in many types of solid tumors

    PENGARUH LIMBAH SERBUK BESI SEBAGAI PENGGANTI SEJUMLAH AGREGAT HALUS TERHADAP CAMPURAN ASPAL

    Get PDF
    The obieaive of this research examining stability andfla+, value was to iwestigste the impact of the utility of iron Jillings waste as a subtitute matqlal for the mtmber of suprisingly small sggregates in the mixture of asphalt. In lhis research, the portion of irontilings waste which given were 5 %o, I0 % and I 5 % of the heauy mixture smooth aggregotes. The stobility quantitative value was 2093 kg in 15 % iron Jilings contents. The higatflow quaftitative value was 3,5 mm in 5 % iron tilings contents. The result of characteristic validdion Mmshall on the number of sabtituted smooth aggregates which used iron/ilings gave o standard coflictent specfrcation 8M.2005. So based on thal, the iron/illings waste technically could be received as a subtitute material for the mixture of suprisingly small aggregates

    Изучение байесовского подхода к анализу медико-биологических данных в курсе медицинской и биологической физики

    Get PDF
    Background: The clinical behaviour of colon cancer is heterogeneous. Five-year overall survival is 50-65% with all stages included. Recurring somatic chromosomal alterations have been identified and some have shown potential as markers for dissemination of the tumour, which is responsible for most colon cancer deaths. We investigated 115 selected stage II-IV primary colon cancers for associations between chromosomal alterations and tumour dissemination. Methods: Follow-up was at least 5 years for stage II-III patients without distant recurrence. Affymetrix SNP 6.0 microarrays and allele-specific copy number analysis were used to identify chromosomal alterations. Fisher's exact test was used to associate alterations with tumour dissemination, detected at diagnosis (stage IV) or later as recurrent disease (stage II-III). Results: Loss of 1p36.11-21 was associated with tumour dissemination in microsatellite stable tumours of stage II-IV (odds ratio = 5.5). It was enriched to a similar extent in tumours with distant recurrence within stage II and stage III subgroups, and may therefore be used as a prognostic marker at diagnosis. Loss of 1p36.11-21 relative to average copy number of the genome showed similar prognostic value compared to absolute loss of copies. Therefore, the use of relative loss as a prognostic marker would benefit more patients by applying also to hyperploid cancer genomes. The association with tumour dissemination was supported by independent data from the The Cancer Genome Atlas. Conclusion: Deletions on 1p36 may be used to guide adjuvant treatment decisions in microsatellite stable colon cancer of stages II and III

    Gene expression profiles in preterm infants on continuous long-term oxygen therapy suggest reduced oxidative stress-dependent signaling during hypoxia

    No full text
    Preterm infants are susceptible to neonatal inflammatory/ infective diseases requiring drug therapy. The present study hypothesized that mRNA expression in the blood may be modulated by signaling pathways during treatment. The current study aimed to explore changes in global gene expression in the blood from preterm infants with the objective of identifying patterns or pathways of potential relevance to drug therapy. The infants involved were selected based on maternal criteria indicating increased risk for therapeutic intervention. Global mRNA expression was measured in 107 longitudinal whole blood samples using Affymetrix Human-Genome-U133 Plus 2.0-arrays; samples were obtained from 20 preterm infants. Unsupervised clustering revealed a distinct homogeneous gene expression pattern in 13 samples derived from seven infants undergoing continuous oxygen therapy. At these sampling times, all but one of the seven infants exhibited severe drops in peripheral capillary saturation levels below 60%. The infants were reoxygenated with 100% inspired oxygen concentration. The other samples ( n= 94) represented the infants from the cohort at time points when they did not undergo continuous oxygen therapy. Comparing these two sets of samples identified a distinct gene expression pattern of 5,986 significantly differentially expressed genes, of which 5,167 genes exhibited reduced expression levels during transient hypoxia. This expression pattern was reversed when the infants became stable, i. e., when they were not continuously oxygenated and had no events of hypoxia. To identify signaling pathways involved in gene regulation, the Database for Annotation, Visualization and Integrated Discovery online tool was used. Mitogen-activated protein kinases, which are normally induced by oxidative stress, exhibited reduced gene expression during hypoxia. In addition, nuclear factor erythroid 2-related factor 2-antioxidant response element target genes involved in oxidative stress protection were also expressed at lower levels, suggesting reduced transcription of this pathway. The findings of the present study suggest that oxidative stress-dependent signaling is reduced during hypoxia. Understanding the molecular response in preterm infants during continuous oxygenation may aid in refining therapeutic strategies for oxygen therapy

    Primary glioblastoma cells for precision medicine : a quantitative portrait of genomic (in)stability during the first 30 passages

    No full text
    Background: Primary glioblastoma cell (GC) cultures have emerged as a key model in brain tumor research, with the potential to uncover patient-specific differences in therapy response. However, there is limited quantitative information about the stability of such cells during the initial 20-30 passages of culture. Methods: We interrogated 3 patient-derived GC cultures at dense time intervals during the first 30 passages of culture. Combining state-of-the-art signal processing methods with a mathematical model of growth, we estimated clonal composition, rates of change, affected pathways, and correlations between altered gene dosage and transcription. Results: We demonstrate that GC cultures undergo sequential clonal takeovers, observed through variable proportions of specific subchromosomal lesions, variations in aneuploid cell content, and variations in subpopulation cell cycling times. The GC cultures also show significant transcriptional drift in several metabolic and signaling pathways, including ribosomal synthesis, telomere packaging and signaling via the mammalian target of rapamycin, Wnt, and interferon pathways, to a high degree explained by changes in gene dosage. In addition to these adaptations, the cultured GCs showed signs of shifting transcriptional subtype. Compared with chromosomal aberrations and gene expression, DNA methylations remained comparatively stable during passaging, and may be favorable as a biomarker. Conclusion: Taken together, GC cultures undergo significant genomic and transcriptional changes that need to be considered in functional experiments and biomarker studies that involve primary glioblastoma cells

    Microsatellite instability and mutations in BRAF and KRAS are significant predictors of disseminated disease in colon cancer

    No full text
    Background: Molecular alterations are well studied in colon cancer, however there is still need for an improved understanding of their prognostic impact. This study aims to characterize colon cancer with regard to KRAS, BRAF, and PIK3CA mutations, microsatellite instability (MSI), and average DNA copy number, in connection with tumour dissemination and recurrence in patients with colon cancer. Methods: Disease stage II-IV colon cancer patients (n = 121) were selected. KRAS, BRAF, and PIK3CA mutation status was assessed by pyrosequencing and MSI was determined by analysis of mononucleotide repeat markers. Genome-wide average DNA copy number and allelic imbalance was evaluated by SNP array analysis. Results: Patients with mutated KRAS were more likely to experience disease dissemination (OR 2.75; 95% CI 1.28-6.04), whereas the opposite was observed for patients with BRAF mutation (OR 0.34; 95% 0.14-0.81) or MSI (OR 0.24; 95% 0.09-0.64). Also in the subset of patients with stage II-III disease, both MSI (OR 0.29; 95% 0.10-0.86) and BRAF mutation (OR 0.32; 95% 0.16-0.91) were related to lower risk of distant recurrence. However, average DNA copy number and PIK3CA mutations were not associated with disease dissemination. Conclusions: The present study revealed that tumour dissemination is less likely to occur in colon cancer patients with MSI and BRAF mutation, whereas the presence of a KRAS mutation increases the likelihood of disseminated disease

    AKN-028 induces cell cycle arrest, downregulation of Myc associated genes and a dose dependent reduction of kinase activity in acute myeloid leukemia

    No full text
    AKN-028 is a novel tyrosine kinase inhibitor with preclinical activity in acute myeloid leukemia (AML), presently undergoing investigation in a phase I/II study. It is a potent inhibitor of the FMS-like kinase 3 (FLT3) but shows in vitro activity in a wide range of AML samples. In the present study, we have characterized the effects of AKN-028 on AML cells in more detail. AKN-028 induced a dose-dependent G(0)/arrest in AML cell line MV4-11. Treatment with AKN-028 caused significantly altered gene expression in all AML cell types tested (430 downregulated, 280 upregulated transcripts). Subsequent gene set enrichment analysis revealed enrichment of genes associated with the proto-oncogene and cell cycle regulator c-Myc among the downregulated genes in both AKN-028 and midostaurin treated cells. Kinase activity profiling in AML cell lines and primary AML samples showed that tyrosine kinase activity, but not serine/threonine kinase activity, was inhibited by AKN-028 in a dose dependent manner in all samples tested, reaching approximately the same level of kinase activity. Cells sensitive to AKN-028 showed a higher overall tyrosine kinase activity than more resistant ones, whereas serine/threonine kinase activity was similar for all primary AML samples. In summary, AKN-028 induces cell cycle arrest in AML cells, downregulates Myc-associated genes and affect several signaling pathways. AML cells with high global tyrosine kinase activity seem to be more sensitive to the cytotoxic effect of AKN-028 in vitro
    corecore