461 research outputs found

    A case of a single intracranial vertebral artery and cerebral infarct

    Get PDF
    The vertebral arteries are commonly affected by anatomical variation. This variation ranges from slight asymmetry in arterial diameter between the right and left sides to complete absence of a vertebral artery on one side. Asymmetry in diameter is a common observation, although complete absence of the artery is rare. Herein, we report on a 79-year-old male anatomical donor who, upon brain removal, was found to have a single intracranial vertebral artery which was the sole source of the basilar artery. During dissection of the neck, both right and left vertebral arteries were identified arising from the subclavian arteries. The vertebral arteries were dissected from the transverse foramina and followed into the skull. The right vertebral artery terminated by supplying the spinal cord, consistent with the distribution of the posterior spinal artery. Such vascular anomalies are clinically significant, as they may lead to abnormal patterns of sensory-motor deficiencies in stroke and are at risk of iatrogenic injury during surgical procedures

    Anatomical dissection of a cadaver with congenital scoliosis

    Get PDF
    Congenital scoliosis is a developmental anomaly involving poorly formed or fused vertebral segments resulting in an abnormal lateral curvature of the vertebral column and is often accompanied by significant rotational defects. Despite abundant literature on causes, diagnosis and treatment of scoliosis, little attention has been given to impacts of this condition on the musculoskeletal system beyond the bony defects. This report describes the detailed, layer-by-layer dissection of the superficial and deep back musculature and examination of the axial skeleton of a 47-year-old male with severe congenital scoliosis. The subject presented with both cervico-thoracic and thoraco-lumbar scoliotic curves. Dissection of the back muscles revealed notable asymmetry in the superficial muscles and marked atrophy of the deep back muscles on the left side. Examination of the axial skeleton revealed numerous bones which were abnormally porous, reduced thoracic volume, attenuated intercostal spaces on the left side and 2 separate fusion deficits, including an unsegmented bar spanning 6 vertebral segments

    Neonatal exposure to monosodium glutamate results in dysmorphology of orofacial lower motor neurons

    Get PDF
    Glutamate is the most abundant excitatory neurotransmitter in the central nervous system, and is stored and released by both neurons and astrocytes. Despite the important role of glutamate as a neurotransmitter, high levels of extracellular glutamate can result in excitotoxicity and apoptosis. Monosodium glutamate (MSG) is a naturally occurring sodium salt of glutamic acid that is used as a flavour enhancer in many processed foods. Neonatal exposure to MSG has been shown to result in neurodegeneration in several forebrain regions, characterised by neuronal loss and neuroendocrine abnormalities. However, the brainstem effects of neonatal MSG exposure have not been investigated. It is therefore hypothesized that MSG exposure during the early postnatal period would impact brainstem lower motor neurons involved in feeding behaviour. The effect of neonatal MSG exposure on brainstem lower motor neurons was investigated by exposing rat pups to either 4 mg/g MSG or saline from postnatal day (P) 4 through 10. On P28, brains were preserved by vascular perfusion with fixative, frozen sectioned and stained for NĂŻssl substance. The number, size and shape of brainstem motor neurons were compared between MSG and saline-exposed animals. MSG exposure had no impact on the total number of neurons in the nuclei examined. However, MSG exposure was associated with a significant increase in the number of round somata in both the trigeminal and facial nuclei. Furthermore, MSG exposure resulted in significantly smaller neurons in all motor nuclei examined. These results suggest that neonatal exposure to MSG impacts the development of brainstem lower motor neurons which may impact feeding and swallowing behaviours in young animals.

    The engineering classroom is still relevant

    Get PDF
    Citation: Fitzsimmons, E. J., Tucker-Kulesza, S. E., Li, X., Jeter, W., & Fallin, J. R. (2016). The engineering classroom is still relevant.Attrition in engineering is a complex issue with dynamically linked variables related to teaching methods in the classroom, student learning behaviors, and student perceptions of difficult material. Extensive research has been conducted in order to understand common, yet ineffective teaching practices in engineering that result in the loss of numerous future engineers. The objective of this study was to determine student actions necessary to achieve a desired grade in any engineering course, regardless of course delivery method and instructor effectiveness in the classroom. An anonymous survey was disseminated and logistic regression models were developed in order to determine relationships between self-regulated learning behaviors and final grades in seven freshman to senior engineering classes taught by civil engineering faculty. A total of five prediction models were developed for each letter grade, with the failing grade "F" serving as the baseline condition, or null model. The models found three significant variables that affect a student's final grade: regular class attendance, note-taking during class, and if he or she could keep up with the instructor during lecture. These interactive learning behaviors were all identified as critical for success, defining success as receiving an "A" in an engineering course. The combination of students taking notes and attending class showed the highest probability of a student receiving an "A." Results of this study have been summarized into a graphic that the authors show and discuss during the first class with students. This powerful graphic shows students what they can do in classes of all levels of civil engineering to succeed in their ever-changing learning environment. © American Society for Engineering Education, 2016

    Supersymmetric top and bottom squark production at hadron colliders

    Get PDF
    The scalar partners of top and bottom quarks are expected to be the lightest squarks in supersymmetric theories, with potentially large cross sections at hadron colliders. We present predictions for the production of top and bottom squarks at the Tevatron and the LHC, including next-to-leading order corrections in supersymmetric QCD and the resummation of soft gluon emission at next-to-leading-logarithmic accuracy. We discuss the impact of the higher-order corrections on total cross sections and transverse-momentum distributions, and provide an estimate of the theoretical uncertainty due to scale variation and the parton distribution functions.Comment: 29 pages, 6 figure

    ATLAS Z Excess in Minimal Supersymmetric Standard Model

    Get PDF
    Recently the ATLAS collaboration reported a 3 sigma excess in the search for the events containing a dilepton pair from a Z boson and large missing transverse energy. Although the excess is not sufficiently significant yet, it is quite tempting to explain this excess by a well-motivated model beyond the standard model. In this paper we study a possibility of the minimal supersymmetric standard model (MSSM) for this excess. Especially, we focus on the MSSM spectrum where the sfermions are heavier than the gauginos and Higgsinos. We show that the excess can be explained by the reasonable MSSM mass spectrum.Comment: 13 pages, 7 figures; published versio

    Multi-Parton Interactions at the LHC

    Get PDF
    We review the recent progress in the theoretical description and experimental observation of multiple parton interactions. Subjects covered include experimental measurements of minimum bias interactions and of the underlying event, models of soft physics implemented in Monte Carlo generators, developments in the theoretical description of multiple parton interactions and phenomenological studies of double parton scattering. This article stems from contributions presented at the Helmholtz Alliance workshop on "Multi-Parton Interactions at the LHC", DESY Hamburg, 13-15 September 2010.Comment: 68 page

    SM and MSSM Higgs Boson Production: Spectra at large transverse Momentum

    Full text link
    Strategies for Higgs boson searches require the knowledge of the total production cross section and the transverse momentum spectrum. The large transverse momentum spectrum of the Higgs boson produced in gluon fusion can be quite different in the Standard Model and the Minimal Supersymmetric Standard Model. In this paper we present a comparison of the Higgs transverse momentum spectrum obtained using the PYTHIA event generator and the HIGLU program as well as the program HQT, which includes NLO corrections and a soft gluon resummation for the region of small transverse momenta. While the shapes of the spectra are similar for the Standard Model, significant differences are observed in the spectra of Minimal Supersymmetric Standard Model benchmark scenarios with large tan(beta).Comment: 8 pages, 13 figure
    • …
    corecore