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Glutamate is the most abundant excitatory neurotransmitter in the central nervous 
system, and is stored and released by both neurons and astrocytes. Despite the 
important role of glutamate as a neurotransmitter, high levels of extracellular gluta­
mate can result in excitotoxicity and apoptosis. Monosodium glutamate (MSG) is  
a naturally occurring sodium salt of glutamic acid that is used as a flavour enhancer 
in many processed foods. Neonatal exposure to MSG has been shown to result 
in neurodegeneration in several forebrain regions, characterised by neuronal loss 
and neuroendocrine abnormalities. However, the brainstem effects of neonatal 
MSG exposure have not been investigated. It is therefore hypothesized that MSG 
exposure during the early postnatal period would impact brainstem lower motor 
neurons involved in feeding behaviour. The effect of neonatal MSG exposure on 
brainstem lower motor neurons was investigated by exposing rat pups to either 
4 mg/g MSG or saline from postnatal day (P) 4 through 10. On P28, brains were 
preserved by vascular perfusion with fixative, frozen sectioned and stained for 
Nïssl substance. The number, size and shape of brainstem motor neurons were 
compared between MSG and saline-exposed animals. MSG exposure had no 
impact on the total number of neurons in the nuclei examined. However, MSG 
exposure was associated with a significant increase in the number of round somata 
in both the trigeminal and facial nuclei. Furthermore, MSG exposure resulted in 
significantly smaller neurons in all motor nuclei examined. These results suggest 
that neonatal exposure to MSG impacts the development of brainstem lower 
motor neurons which may impact feeding and swallowing behaviours in young 
animals. (Folia Morphol 2017; 76, 4: 582–589)
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INTRODUCTION 
Glutamate is the major excitatory neurotransmit-

ter in the central nervous system [11, 33, 41] and the 
excitatory effects of glutamate on neurons are well 
established [7, 20]. Monosodium glutamate (MSG) is 

a common food additive that dissolves into L-glutamic 
acid; chronic exposure to MSG is associated with 
neurotoxic effects [13, 18, 43]. Indeed, administra-
tion of high levels of MSG results in persistent activa-
tion of glutamate receptors [12, 31] and repetitive 
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and prolonged activation of NMDA receptors results 
in elevated intracellular Ca++ levels, disruption of 
mitochondrial membranes, DNA fragmentation and 
apoptosis [9, 17, 23, 34, 36, 40, 42]. It has been es-
tablished that the blood-brain barrier of neonates is 
immature and that glutamate can traverse this barrier 
and exert excitotoxic effects on adjacent brain regions 
[32, 42]. Thus, repeated exposure to MSG, especially 
during the neonatal period, results in neuronal dam-
age and cell death in a number of different brain re-
gions [2, 4, 8, 35, 38]. Specifically, MSG exposure has 
been shown to result in fewer neurons in the spiral 
ganglion [5], severe degeneration of retinal ganglion 
cells [39, 47], smaller brains and lower body weights 
[46], fewer cerebellar Purkinje cells, deficits in motor 
coordination [26, 37] and fewer cortical neurons [6].

Taken together, there is overwhelming evidence that 
neonatal MSG-exposure causes neuronal degenera-
tion in forebrain and cerebellum. However, the effects 
of MSG have not been investigated in the brainstem. 
Orofacial motor circuits are highly functional and ac-
tive during the neonatal period for suckling, swallow-
ing, blinking and vocalising and are known to receive 
significant glutamatergic input [45]. It is therefore hy-
pothesized that MSG-induced excitoxicity during the 
neonatal period might impact structure and function 
of orofacial lower motor neurons (LMN). To examine 
this hypothesis, rat pups were exposed to MSG from P4 
to P10 and examined the neuronal morphology in the 
trigeminal motor nucleus (TMN), facial nucleus (FN), nu-
cleus ambiguous (NA) and the hypoglossal nucleus (HN).

MATERIALS AND METHODS
All procedures were approved by the Lake Erie Col-

lege of Osteopathic Medicine Institution Animal Care 
and Use Committee (protocol #14-04). Sprague Dawley 
rats were maintained on a 12 h light/dark cycle with 
free access to food and water. Animals were mated 
and pregnant females were permitted to deliver litters 
without interference; the date of birth was recorded 
as postnatal day 0 (P0). On P4, litters were culled to 
between 6 and 9 male pups; these pups were divided 
into saline (n = 5) and MSG (n = 9) injected groups. 
Between P4 and P10, animals were weighed and in-
jected (subcutaneously, along the dorsal hindquarters) 
with MSG (4 mg/g) or saline (equivalent volume of 0.9% 
NaCl). This dosage of MSG has been shown previously 
to produce robust effects in the hippocampus and cer-
ebellum [14, 37]. Litters were weaned at P21 and the 
two cohorts (saline and MSG) were housed separately. 

On P28, animals were weighed and a measurement of 
total body length (i.e. tip of nose to tip of the tail) was 
taken. Animals were then anesthetised with an intraperi-
toneal injection of pentobarbital (80 mg/kg) and when 
animals were unresponsive, they were perfused through 
the ascending aorta with normal saline followed by 4% 
paraformaldehyde in 0.1 M sodium phosphate buffer 
(PB; pH 7.2; fixative). Brains were dissected from the 
skull, weighed and the right side of the brainstem was 
marked with a register pin and brains were stored in 
fixative (at 4°C) for at least 24 h. Approximately 24 h 
before frozen sectioning, brainstems were placed in 
a solution of 30% sucrose in fixative at 4°C until they 
were saturated. Brainstems were sectioned on a freesing 
microtome in the coronal plane at a thickness of 40 μm. 
Every third tissue section was collected for histology; 
these sections were mounted onto glass slides in caudal-
to-rostral sequence from cresyl gelatin and dried at 
room temperature. Slides were rehydrated, stained for 
Nissl substance with Giemsa (Sigma-Aldrich) for 60 min, 
dehydrated through ascending alcohols, cleared and 
coverslipped with Permount (Fisher Scientific). Giemsa-
stained tissue sections were examined with an Olympus 
BX45 microscope. Cell body contours were traced, by an 
observer blind to experimental condition, using a 40× 
objective (final magnification of 1000×). Cell body trac-
ings were digitised and quantified using ImageJ (1.48v). 
For each nucleus, estimates of neuronal number were 
calculated as previously described [27–29, 48]. 

Statistical analysis

Descriptive statistics were generated for all data 
sets using GraphPad Prism 6 (GraphPad Software).

Correlation between animal body weights and 
brain weight was examined using Pearson correlation 
coefficient. All data sets were examined for a normal 
distribution using the D’Agostino and Pearson omni-
bus normality test and were compared using paramet-
ric tests (i.e. t-test). For each nucleus, a contingency 
table of cell body morphologies was constructed and 
the distribution of these morphologies was compared 
using a c2 test. Differences were considered statistically 
significant if p values were < 0.05.

RESULTS
Body weight

Neonatal exposure to MSG was not fatal to any 
of the exposed animals but resulted in a significant 
decrease in body weight and shorter head-to-tail 
length by P28 (Table 1). Additionally, MSG-exposed 
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animals had brains that weighted significantly less 
than saline-exposed animals (Table 1). Correlation of 
brain weight and body weight revealed r2 values of 
0.93 (saline) and 0.44 (MSG), suggesting that brain 
size is not directly proportional to body weight in 
MSG-exposed animals. 

 Trigeminal motor nucleus

In the TMN, neonatal MSG-exposure affected only 
the distribution of cell body morphologies (Fig. 1). MSG 
exposure had no impact on the number of neurons 
in the TMN (Fig. 1C). In saline-exposed animals, the 
TMN was composed of 67% stellate (S; arrowheads in  
Fig. 1A), 30% round (R; arrows) and 4% fusiform neurons  
(F; Fig. 1D). In MSG-exposed animals, the TMN was  

composed of 50% stellate (arrowheads in Fig. 1B), 40% 
round (arrows) and 10% fusiform neurons and this 
difference in populations was statistically significant  
(Fig. 1A, B, D). MSG exposure had no impact on the size of 
stellate or round neuronal somata in the TMN (Fig. 1E, F). 

Facial nucleus

In the FN, neonatal MSG-exposure resulted in sig-
nificant dysmorphology of motor neurons (Figs. 2, 3). 
MSG exposure had no impact on the total number of 
neurons in the FN (Fig. 2C). In saline-exposed animals, 
the FN was composed of 68% stellate (arrowheads 
in Fig. 3A), 30% round (arrows in Fig. 3A) and 2%  
fusiform neurons. In MSG-exposed animals, the FN 
was composed of 43% stellate (arrowheads in Fig. 3B),  
53% round (arrows in Fig. 3B) and 4% fusiform neu-
rons (double arrows in Fig. 3B) and this difference in 
populations was statistically significant (Fig. 2A, B, D).  
Both stellate and round neuronal somata were sig-
nificant smaller in MSG exposed animals (Figs. 2E, F; 
3A–D). The cross-sectional areas of both stellate and 
round neuronal somata in saline-exposed animals 
were normally distributed (Fig. 3C, D). However, in 
MSG exposed animals, the distribution of both stel-
late and round neuronal somata were not normally 
disturbed and were positively skewed (Fig. 3C, D).

Figure 1. Trigeminal motor nucleus (TMN). Trigeminal motor neurons from saline and monosodium glutamate (MSG)-exposed animals are 
shown in panels A and B, respectively (scale bar in panel B is equal to 100 µm). Arrowheads indicate stellate neurons and black arrows indi-
cate round neurons. The estimated number of TMN neurons is shown in panel C. The distribution of neuronal morphologies is shown in panel D  
(Chi square; S — stellate, R — round, F — fusiform). There were fewer stellate neurons and more round neurons in MSG-exposed animals. 
The cross sectional area of stellate (E) and round (F) TMN neurons is shown. Error bars represent the standard deviation; *p < 0.05. 

Table 1. Morphometric data

Saline MSG

Survival 100% 100%

Body weight [g] 95.26 ± 15.9 79.41 ± 9.6*

Total body length [cm] 25.76 ± 1.2 23.44 ± 1.38**

Brain weight [g] 1.52 ± 0.09 1.42 ± 0.09*

Data are shown as mean ± standard deviation; MSG — monosodium glutamate;  
*p < 0.05; **p < 0.01 
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Figure 3. Size of neurons in the facial nucleus (FN). FN neurons from saline (A) and monosodium glutamate (MSG)-exposed (B) animals are 
shown. In the FN of MSG-exposed animals, both stellate (arrowheads) and round neurons (arrows) had significantly smaller cell bodies, see  
especially the white asterisks in panel B. Fusiform neurons (double arrows) were more common in MSG-exposed animals. The scale bar in panel B 
is equal to 60 µm. In saline-exposed animals, the distribution of both stellate and round neurons followed a normal distribution. In MSG-exposed 
animals, FN neurons were smaller and the distribution of cell body sizes was skewed (C, D). 

Figure 2. Facial nucleus (FN). The FN is shown from saline (A) and monosodium glutamate (MSG)-exposed animals (B). The scale bar in 
panel B is equal to 200 µm. The estimated number of FN neurons is shown in panel C. The distribution of neuronal morphologies is shown in 
panel D (Chi square; S — stellate, R — round, F — fusiform). There were fewer stellate and more round neurons in MSG-exposed animals. 
The cross sectional area of stellate (E) and round (F) FN neurons is shown. Error bars represent the standard deviation; **p < 0.01, ****p < 0.0001. 
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Nucleus ambiguous

In the NA, neonatal MSG-exposure resulted in 
only minor dysmorphology of motor neurons with 
a round morphology (Fig. 4). MSG exposure had no 
impact on the number of NA neurons (Fig. 4C). In 
saline-exposed animals, the NA was composed of 27% 
stellate (arrowhead in Fig. 4A), 70% round (arrows in 
Fig. 4A) and 2% fusiform neurons. In MSG-exposed 
animals, the NA was composed of 21% stellate (ar-
rowheads in Fig. 4B), 73% round (arrows in Fig. 4B) 
and 6% fusiform neurons. There was no difference 
in the size of stellate neuronal somata in the NA of 
saline or MSG-exposed animals (Fig. 4E). However, 
MSG exposure resulted in significantly smaller round 
NA neuronal somata (Fig. 4F).  

Hypoglossal nucleus

In the HN, neonatal MSG-exposure resulted in 
dysmorphology of only neurons with round somata 
(Fig. 5). There was no difference in the number of HN 
neurons in saline or MSG-exposed animals (Fig. 5C).  
In saline-exposed animals, the HN was composed 
of 40% stellate (arrowheads in Fig. 5A), 58% round 
(arrows in Fig. 5A) and 2% fusiform neurons. In 
MSG-exposed animals, the NA was composed of 
25% stellate (arrowhead in Fig. 5B), 69% round 
(arrows in Fig. 5B) and 5% fusiform neurons. There 

was no difference in the size of stellate neuronal 
somata between saline and MSG-exposed animals 
(Fig. 5E). However, the somata of round neurons 
in the HN were significantly smaller after MSG 
exposure (Fig. 5F).  

DISCUSSION
There is abundant evidence that neonatal MSG 

exposure results in loss of neurons in forebrain regions, 
the cerebellum, retina and spiral ganglion [2, 4, 5, 
8, 35, 38, 39, 47]. Herein, evidence is provided that 
neonatal MSG exposure also significantly impacts the 
morphology of orofacial LMNs, with the most severe 
changes occurring in the FN. This study is based on ob-
servations from a small number of MSG-exposed ani-
mals (n = 9). A more detailed study of a larger cohort 
of animals will be needed to draw major conclusions. 
Regardless, gross examination of the brain from the 
MSG-exposed animals in this study revealed marked 
atrophy of the optic nerves and tracts. This observa-
tion is consistent with previous reports [39, 47] and 
indicates that the dosage scheme used in this study 
was sufficient to produce forebrain dysmorphology.  

The estimates of neuronal number revealed no 
difference in the number of orofacial LMNs between 
control and MSG-exposed animals. In other brain re-
gions (e.g. hippocampus), a similar dosing regimen of 

Figure 4. Nucleus ambiguous (NA). NA motor neurons from saline and monosodium glutamate (MSG)-exposed animals are shown in panels A and B, 
respectively (the scale bar in panel B is equal to 60 µm). The estimated number of NA neurons is shown in panel C. The distribution of neuronal 
morphologies is shown in panel D (Chi square; S — stellate, R — round, F — fusiform). The cross sectional area of stellate (arrowheads; E)  
and round (black arrows; F) NA neurons is shown. Round neurons were significantly smaller in MSG exposed animals. Error bars represent  
the standard deviation; *p < 0.05.
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MSG resulted in significantly fewer neurons [6, 14, 39, 
42]. The observation of normal orofacial LMN number 
suggests these neurons are protected from excitotoxic 
events in the early neonatal period, as early as P4. No-
tably, injury to motor axons between embryonic day 18 
and P14 (rat), results in regeneration of injured axons 
and reinnervation of the muscle [16]. Taken together, 
these observations suggest that orofacial LMNs might 
be protected from excitotoxic injury during the neo-
natal period. Such protection might be contributed by 
maturation of GABAergic synapses [30], activation of 
microglia or perineuronal nets [48].  

The results provided herein are in accordance with 
the hypothesis that the number of orofacial LMNs is 
stable and protected as early as P4 in rats. However, 
during this early postnatal period, the dendritic ar-
bours are still immature as are the arrangement of 
excitatory and inhibitory inputs to these neurons. 
Spinal LMNs have been shown to increase the size of 
their soma and spread of the dendritic tree, reach-
ing adult morphology by approximately P28 and 
this process is dependent on activation of NMDA 
receptors [24]. Brainstem LMNs, like those in the FN, 
receive input from a number of sources. For example, 
the FN nucleus is known to receive excitatory inputs 

from the cerebral cortex, the superior colliculus, red 
nucleus, reticular formation and a number of addi-
tion brainstem centres [15, 22, 44, 45]. It is proposed 
that the changes identified in neuronal morphology, 
especially in the FN, are due to selective sensitivity of 
neurons providing excitatory input to these LMNs. 

There are a large number of excitatory inputs to 
LMNs in the facial nucleus, such as the periaqueductal 
grey, red nucleus, superior colliculus, cerebellum and pri-
mary motor cortex [1, 10, 15, 19, 21, 30]. Furthermore, 
excitatory projections from the perioculomotor region 
and even the oculomotor and Edinger-Westphal nuclei 
have been demonstrated [15, 19, 30, 44]. With the 
observed retinal degeneration and visual impairment 
resulting from neonatal MSG exposure [25, 39, 47], 
it is proposed that ensuing paucity of eye movements 
might impact the number and strength of excitatory 
inputs from oculomotor centres and the superior col-
liculus to facial LMNs. Such an alteration in excitatory 
inputs might therefore have a significant impact on 
the morphology of FN somata and dendritic arbours. 

CONCLUSIONS
Evidence is provided that MSG exposure during 

the neonatal period does not impact the number of 

Figure 5. Hypoglossal nucleus (HN). HN motor neurons from saline and monosodium glutamate (MSG)-exposed animals are shown in panels A and B, 
respectively (the scale bar in panel B is equal to 100 µm). The estimated number of HN neurons is shown in panel C. The distribution of neuronal mor-
phologies is shown in panel D (Chi square; S — stellate, R — round, F — fusiform). The cross sectional area of stellate (arrowheads; E) and round 
(black arrows; F) HN neurons is shown. MSG exposure resulted in significantly smaller round neurons in the HN (black arrows; F). Error bars represent 
the standard deviation; *p < 0.05.
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orofacial LMNs. However, MSG exposure did result in 
significant smaller neurons in the TMN, FN, NA and 
HN. Additionally, in both the TMN and FN, significant-
ly more round/oval cell bodies are found after MSG 
exposure. The data provides evidence that orofacial 
LMNs are protected from excitotoxic events in the 
early neonatal period. However, neurons providing 
excitatory input to these LMNs might be suscepti-
ble to MSG. The functional impacts of altered input 
to LMNs, diminished dendritic arbours or smaller 
cell bodies is unclear but might result in difficulties 
in exploration of the animals environment (altered 
movement of vibrissae), suckling and blinking (facial 
muscles), chewing (muscles of mastication), swal-
lowing and vocalisation (tongue muscles; pharyngeal 
and laryngeal muscles). Further investigations into 
dendritic architecture and feeding behaviours will 
be necessary to determine the functional impact of 
these alterations. Even though a small number of ani-
mals were examined in this study, the results suggest 
that neonatal MSG exposure has a significant impact 
on brainstem neuronal circuits. This result suggests 
that MSG exposure should be carefully monitored 
in neonates. 
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