84 research outputs found

    Mycobacterial lipoarabinomannans modulate cytokine production in human T helper cells by interfering with raft/microdomain signalling

    Get PDF
    Abstract.: Lipoarabinomannans (LAMs) are major lipoglycans of the mycobacterial envelope and constitute immunodominant epitopes of mycobacteria. In this paper, we show that mannose-capped (ManLAM) and non-mannose- capped (PILAM) mycobacterial lipoglycans insert into T helper cell rafts without apparent binding to known receptors. T helper cells modified by the insertion of PILAM responded to CD3 cross-linking by decreasing type 1 (IL-2 and IFN-γ) and increasing type 2 (IL-4 and IL-5) cytokine production. Modification by the mannose-capped ManLAMs had similar, but more limited effects on T helper cell cytokine production. When incorporated into isolated rafts, PILAMs modulated membrane-associated kinases in a dose-dependent manner, inducing increased phosphorylation of Src kinases and Cbp/PAG in Th1 rafts, while decreasing phosphorylation of the same proteins in Th2 rafts. Mycobacterial lipoglycans thus modify the signalling machineries of rafts/microdomains in T helper cells, a modification of the membrane organization that eventually leads to an overall enhancement of type 2 and inhibition of type 1 cytokine productio

    The use of a P. falciparum specific coiled-coil domain to construct a self-assembling protein nanoparticle vaccine to prevent malaria.

    Get PDF
    The parasitic disease malaria remains a major global public health concern and no truly effective vaccine exists. One approach to the development of a malaria vaccine is to target the asexual blood stage that results in clinical symptoms. Most attempts have failed. New antigens such as P27A and P27 have emerged as potential new vaccine candidates. Multiple studies have demonstrated that antigens are more immunogenic and are better correlated with protection when presented on particulate delivery systems. One such particulate delivery system is the self-assembling protein nanoparticle (SAPN) that relies on coiled-coil domains of proteins to form stable nanoparticles. In the past we have used de novo designed amino acid domains to drive the formation of the coiled-coil scaffolds which present the antigenic epitopes on the particle surface. Here we use naturally occurring domains found in the tex1 protein to form the coiled-coil scaffolding of the nanoparticle. Thus, by engineering P27A and a new extended form of the coiled-coil domain P27 onto the N and C terminus of the SAPN protein monomer we have developed a particulate delivery system that effectively displays both antigens on a single particle that uses malaria tex1 sequences to form the nanoparticle scaffold. These particles are immunogenic in a murine model and induce immune responses similar to the ones observed in seropositive individuals in malaria endemic regions. We demonstrate that our P27/P27A-SAPNs induce an immune response akin to the one in seropositive individuals in Burkina Faso. Since P27 is highly conserved among different Plasmodium species, these novel SAPNs may even provide cross-protection between Plasmodium falciparum and Plasmodium vivax the two major human malaria pathogens. As the SAPNs are also easy to manufacture and store they can be delivered to the population in need without complication thus providing a low cost malaria vaccine

    Thin Polymer Brush Decouples Biomaterial's Micro-/Nano-Topology and Stem Cell Adhesion

    Get PDF
    Surface morphology and chemistry of polymers used as biomaterials, such as tissue engineering scaffolds, have a strong influence on the adhesion and behavior of human mesenchymal stem cells. Here we studied semicrystalline poly(ε-caprolactone) (PCL) substrate scaffolds, which exhibited a variation of surface morphologies and roughness originating from different spherulitic superstructures. Different substrates were obtained by varying the parameters of the thermal processing, i.e. crystallization conditions. The cells attached to these polymer substrates adopted different morphologies responding to variations in spherulite density and size. In order to decouple substrate topology effects on the cells, sub-100 nm bio-adhesive polymer brush coatings of oligo(ethylene glycol) methacrylates were grafted from PCL and functionalized with fibronectin. On surfaces featuring different surface textures, dense and sub-100 nm thick brush coatings determined the response of cells, irrespective to the underlying topology. Thus, polymer brushes decouple substrate micro-/nano-topology and the adhesion of stem cells

    Surface functionalisation of nanodiamonds for human neural stem cell adhesion and proliferation.

    Get PDF
    Biological systems interact with nanostructured materials on a sub-cellular level. These interactions may govern cell behaviour and the precise control of a nanomaterial's structure and surface chemistry allow for a high degree of tunability to be achieved. Cells are surrounded by an extra-cellular matrix with nano-topographical properties. Diamond based materials, and specifically nanostructured diamond has attracted much attention due to its extreme electrical and mechanical properties, chemical inertness and biocompatibility. Here the interaction of nanodiamond monolayers with human Neural Stem Cells (hNSCs) has been investigated. The effect of altering surface functionalisation of nanodiamonds on hNSC adhesion and proliferation has shown that confluent cellular attachment occurs on oxygen terminated nanodiamonds (O-NDs), but not on hydrogen terminated nanodiamonds (H-NDs). Analysis of H and O-NDs by Atomic Force Microscopy, contact angle measurements and protein adsorption suggests that differences in topography, wettability, surface charge and protein adsorption of these surfaces may underlie the difference in cellular adhesion of hNSCs reported here

    Nanotopography-induced changes in focal adhesions, cytoskeletal organization, and mechanical properties of human mesenchymal stem cells.

    No full text
    The growth of stem cells can be modulated by physical factors such as extracellular matrix nanotopography. We hypothesize that nanotopography modulates cell behavior by changing the integrin clustering and focal adhesion (FA) assembly, leading to changes in cytoskeletal organization and cell mechanical properties. Human mesenchymal stem cells (hMSCs) cultured on 350 nm gratings of tissue-culture polystyrene (TCPS) and polydimethylsiloxane (PDMS) showed decreased expression of integrin subunits alpha2, alpha , alpha V, beta2, beta 3 and beta 4 compared to the unpatterned controls. On gratings, the elongated hMSCs exhibited an aligned actin cytoskeleton, while on unpatterned controls, spreading cells showed a random but denser actin cytoskeleton network. Expression of cytoskeleton and FA components was also altered by the nanotopography as reflected in the mechanical properties measured by atomic force microscopy (AFM) indentation. On the rigid TCPS, hMSCs on gratings exhibited lower instantaneous and equilibrium Young's moduli and apparent viscosity. On the softer PDMS, the effects of nanotopography were not significant. However, hMSCs cultured on PDMS showed lower cell mechanical properties than those on TCPS, regardless of topography. These suggest that both nanotopography and substrate stiffness could be important in determining mechanical properties, while nanotopography may be more dominant in determining the organization of the cytoskeleton and FAs

    The effect of substrate topography on direct reprogramming of fibroblasts to induced neurons

    No full text
    Cellular reprogramming holds tremendous potential for cell therapy and regenerative medicine. Recently, fibroblasts have been directly converted into induced neurons (iNs) by overexpression of the neuronal transcription factors Ascl1, Brn2 and Myt1L. Hypothesizing that cell-topography interactions could influence the fibroblast-to-neuron reprogramming process, we investigated the effects of various topographies on iNs produced by direct reprogramming. Final iN purity and conversion efficiency were increased on micrograting substrates. Neurite branching was increased on microposts and decreased on microgratings, with a simplified dendritic arbor characterized by the reduction of MAP2+ neurites. Neurite outgrowth increased significantly on various topographies. DNA microarray analysis detected 20 differentially expressed genes in iNs reprogrammed on smooth versus microgratings, and quantitative PCR (qPCR) confirmed the upregulation of Vip and downregulation of Thy1 and Bmp5 on microgratings. Electrophysiology and calcium imaging verified the functionality of these iNs. This study demonstrates the potential of applying topographical cues to optimize cellular reprogramming

    Methods For Treating And/Or Preventing Pervasive Developmental Disorders In A Subject

    No full text
    The present invention concerns a method for treating and/or preventing a Pervasive Developmental Disorder in a subject in need thereof comprising the step of modulating the synaptic connectivity in the neocortex by administering a therapeutically effective amount of a composition capable of reducing memory, perception and/or attentio

    Mycobacterial lipoarabinomannans modulate cytokine production in human T helper cells by interfering with raft/microdomain signalling

    No full text
    Lipoarabinomannans (LAMs) are major lipoglycans of the mycobacterial envelope and constitute immunodominant epitopes of mycobacteria. In this paper, we show that mannose-capped (ManLAM) and non-mannose-capped (PILAM) mycobacterial lipoglycans insert into T helper cell rafts without apparent binding to known receptors. T helper cells modified by the insertion of PILAM responded to CD3 cross-linking by decreasing type 1 (IL-2 and IFN-gamma) and increasing type 2 (IL-4 and IL-5) cytokine production. Modification by the mannose-capped ManLAMs had similar, but more limited effects on T helper cell cytokine production. When incorporated into isolated rafts, PILAMs modulated membrane-associated kinases in a dose-dependent manner, inducing increased phosphorylation of Src kinases and Cbp/PAG in Th1 rafts, while decreasing phosphorylation of the same proteins in Th2 rafts. Mycobacterial lipoglycans thus modify the signalling machineries of rafts/microdomains in T helper cells, a modification of the membrane organization that eventually leads to an overall enhancement of type 2 and inhibition of type 1 cytokine production
    corecore