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Abstract. Lipoarabinomannans (LAMs) are major lipo-
glycans of the mycobacterial envelope and constitute im-
munodominant epitopes of mycobacteria. In this paper,
we show that mannose-capped (ManLAM) and non-man-
nose-capped (PILAM) mycobacterial lipoglycans insert
into T helper cell rafts without apparent binding to known
receptors. T helper cells modified by the insertion of
PILAM responded to CD3 cross-linking by decreasing
type 1 (IL-2 and IFN-g) and increasing type 2 (IL-4 and
IL-5) cytokine production. Modification by the mannose-
capped ManLAMs had similar, but more limited effects
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on T helper cell cytokine production. When incorporated
into isolated rafts, PILAMs modulated membrane-associ-
ated kinases in a dose-dependent manner, inducing in-
creased phosphorylation of Src kinases and Cbp/PAG in
Th1 rafts, while decreasing phosphorylation of the same
proteins in Th2 rafts. Mycobacterial lipoglycans thus
modify the signalling machineries of rafts/microdomains
in T helper cells, a modification of the membrane organi-
zation that eventually leads to an overall enhancement of
type 2 and inhibition of type 1 cytokine production.
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munodominant epitopes of mycobacteria [3, 4] that ac-
cumulate in the infected host and induce strong antibody
responses [5]. Mannose capping of the LAM arabinan
polymers (ManLAM) was originally considered to occur
mostly in mycobacterial strains of high virulence [1], but
this view was later revised when LAMs from Mycobac-
terium tuberculosis were all found to be mannose-capped,
in both virulent and less virulent strains [6, 7]. Mannose-

The lipoarabinomannan (LAM) lipoglycans span the my-
cobacterial envelope [1], and are thought to insert into the
mycobacterial plasma membrane by way of their glyco-
sylphosphatidylinositol (GPI) anchor [2]. LAMs are im-
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capped LAMs were less efficient than the non-mannose-
capped LAMs (PILAMs) in modulating the cytokine pro-
duction of macrophages [6–10], but recent studies have
documented potent biological activities of ManLAMs
[11, 12], which may be active in different contexts than
PILAMs. The non-mannose-capped PILAM molecules
are actually capped with a phospho-myo-inositol and
should no longer be named AraLAMs, the term AraLAM
being only appropriate for the rare and fully non-capped
LAMs elaborated by M. chelonae [13].
Several surface receptors have been identified with the
capacity to bind LAMs. In particular, mannose receptors
on phagocytes bind ManLAMs, but not AraLAMs lack-
ing terminal di-mannosyl units [14, 15]. Likewise, the
dendritic cell surface receptor DC-SIGN (dendritic cell-
specific intercellular adhesion molecule-3-grabbing non-
integrin) specifically recognizes capped LAMs [16]. The
GPI-anchored CD14 pattern recognition receptor allows
phagocytes to sense bacterial products in their environ-
ment, and binds several lipoglycans including LAMs [17]
and peptidoglycans [18]. Likewise, distinct Toll-like re-
ceptors function as pattern-recognition receptors and me-
diate macrophage responses to LPS-CD14 or PILAM-
CD14 complexes [19]. Lastly, the CD1 surface molecules
accommodate ManLAMs in their large hydrophobic
binding groove [20, 21] and induce immune responses [3,
4]. The ManLAM molecule can be sampled by different
group I CD1 receptors in endosomes of mycobacteria-
laden, antigen-presenting cells [22], and presented to a
variety of CD1-restricted T cells [23]. 
T lymphocytes are devoid of such LAM-binding recep-
tors, but are nonetheless functionally modified following
interaction with LAMs [8, 24, 25]. In particular, Jurkat
cells preincubated with LAMs downregulate mRNA lev-
els for interleukin IL-2, IL-3 and granulocyte/macro-
phage-colony-stimulating factor (GM-CSF) when mito-
gen-activated [26], but neither the direct effects of LAMs
on T lymphocytes with polarized cytokine production
patterns, nor the interference of LAMs with the raft sig-
nalling platform, have been investigated. 
Through differential cytokine release, T lymphocytes in-
duce cell-mediated or humoral responses to pathogens.
Among CD4 T cells, type 1 helper (Th1) lymphocytes
synthesize the IL-2 and IFN-g cytokines generally as-
sociated with resistance to intracellular infection, and
favour cell-mediated immune responses such as delayed-
type hypersensitivity and activation of cytotoxic T cells
and macrophages, while the Th2 lymphocytes predomi-
nantly release IL-4 and IL-5 to promote B cell activation
and humoral responses [27, 28]. The spectrum of leprosy
skin lesions is typically polarized and ranges from tuber-
culoid type 1 to lepromatous type 2 responses. Patients
with tuberculoid lesions present with a localized form of
the disease and a strong cell-mediated response. The 
lepromatous leprosy patients present with multibacillary
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lesions and high titers of specific antibodies but poor
cell-mediated immune responses against M. leprae anti-
gens. Furthermore, the detection of high levels of 
IL-2 and IFN-g mRNA in the total RNA extracted from
lesions of tuberculoid leprosy patients contrasts with the
high levels of IL-4 and IL-5 measured in lepromatous
leprosy lesions [29, 30].
To further define the interaction of M. leprae lipoglycans
with helper T cells, we investigated the effects of LAMs on
the raft signalling platform and the polarized patterns of
cytokine production of helper T cells. We show that LAMs
insert into sphingolipid-rich rafts/microdomains of the
plasma membrane of polarized T helper cells and modulate
raft-associated protein kinases in a dose-dependent man-
ner. To document the functional consequences of such
events, we have analysed the modifications in the cytokine
profiles of activated T helper cells after incubation with
AraLAMs or ManLAMs. Our results show that LAMs 
inserted in T helper lymphocyte rafts alter patterns of 
cytokine production, most likely by modifying the transbi-
layer organization of the raft signalling platform.

Materials and methods

Mycobacterial lipoglycans
LAMs from a rapidly growing unclassified Mycobac-
terium species (PILAMs) and a virulent strain (Erdman)
of M. tuberculosis (ManLAMs) were isolated as previ-
ously described [1], and found free of contaminating
mycobacterial products. LAMs were obtained in freeze-
dried form, reconstituted in sterile water and stored at
–20°C. Deacylated PILAM was prepared by mild alka-
line hydrolysis [31]. One hundred micrograms of PILAMs
was incubated in 100 ml of 0.1 N NaOH for 2 h at 37°C,
neutralized with acetic acid and desalted through Bio-Gel
P-10 (Bio-Rad, Hercules, Calif.) in PBS. The eluted, dea-
cylated PILAM was lyophilized and reconstituted in PBS.
An aliquot of PILAM was processed similarly but incu-
bated with water instead of NaOH. Lipopolysaccharide
(LPS) and polymyxin B were obtained from Sigma
(Fluka, Buchs, Switzerland).

Antibodies
The anti-CD3 OKT3 monoclonal antibody (mAb)-pro-
ducing hybridoma was from ATCC (Bethesda, Md.). For
dot-blotting, the anti-CD3e and anti-CD4 mAbs were from
Dako (DakoCytomation, Zug, Switzerland), CD55 was 
detected with the IA-10 mAb (BD Pharmingen, Basel,
Switzerland), CD59 with MEM-43 mAb and CD45 with
the MEM-28 mAb. The GM1 ganglioside was detected
with the peroxidase-labelled B subunit of cholera toxin
(CTB; Sigma). LAMs (AraLAM and ManLAM) were de-
tected with the anti-LAM mAb CS35. All MEM mAbs
were kindly donated by Dr. V. Horejsi, Academy of Sci-



ences of the Czech Republic, Prague. For Western blotting,
the anti-Lck and anti-Fyn polyclonal anti-peptide antibod-
ies were from Santa Cruz (LabForce, Nunningen, Switzer-
land) and Cbp/PAG was detected with the MEM-255 mAb.

Generation of Th1 and Th2 cell clones
Th1 and Th2 cell clones were generated from peripheral
blood of normal individuals upon antigen activation and
cloning by limiting dilution in RPMI-1640 medium sup-
plemented with IL-2 (20 U/ml), penicillin (50 U/ml), strep-
tomycin (50 mg/ml), 5% human AB serum, 10% FCS, irra-
diated (3500 rad) allogeneic PBMCs, and PHA (1 mg/ml)
as described elsewhere [32]. Growing cells were further
expanded and characterized for their capacity to produce
IFN-g and IL-4 upon CD3 cross-linking. High IFN-g/low
IL-4 producers were defined as Th1 whereas low IFN-g
high IL-4 producers were Th2 [31]. Cultured T cells were
harvested 15 days after stimulation, washed extensively
and suspended in RPMI-1640 medium for further studies.

Sucrose gradient centrifugation of Th1 and Th2 cells
Th1 and Th2 (50 ¥ 106) cells were incubated in 100 ml of
serum-free medium containing 20 mg PILAMs or Man-
LAMs (200 mg/ml) for 30 min at 37°C. This corresponds
to 0.4 mg LAMs for 1 ¥ 106 cells, the same ratio of LAMs
to cells used to evaluate the effects of LAM on cytokine
mRNA and protein production. After one wash in PBS,
the cells were lysed in 1% TX-100 before equilibrium 
sucrose gradient centrifugation as previously described
and an equal volume of each fraction (20 ml) was sampled
and adsorbed on nitrocellulose using the BioRad dot-blot
apparatus [33]. Raft fractions (low-density fractions 3–5)
were pooled, the detergent-resistant membranes pelleted

by ultracentrifugation and their contents analysed by
Western blotting [34].

Evaluation of the effects of mycobacterial lipoglycans
on the production of T helper cell cytokines 
For cytokine mRNA levels, 4 ¥ 106 Th1 or Th2 cells were
incubated in 270 ml of serum-free RPMI medium contain-
ing PILAMs or ManLAMs (6 mg/ml) for 30 min at 37°C.
Control cells were incubated under the same conditions
without mycobacterial lipoglycans. Unbound LAM was
removed by washing with medium containing 10% FCS.
The cells were suspended in 1 ml complete medium and
stimulated or not in the presence of 10 mg/ml of OKT3 and
PMA (5 ng/ml) for 6 h at 37°C. Cytokine protein levels
were determined in cell-free supernatants.

RNA extraction, cDNA preparation and amplification
Th1 or Th2 cells were pelleted and lysed in 1 ml Trizol
(Life Technologies), the lysate mixed with 0.2 ml chloro-
form, centrifuged, and the RNA precipitated from the
aqueous phase by addition of 1.5 ml isopropylalcohol
(Sigma). The RNA pellet was resuspended in 25 ml DEPC-
treated water and its concentration measured spectrophoto-
metrically. Complementary DNA was synthesized from
RNA (0.5 mg) using 200 U of Moloney murine leukaemia
virus-reverse transcriptase (Life Technologies, Gaithers-
burg, Md.) in a total reaction volume of 20 ml, for 1 h at
37°C, and used as template for amplification by PCR. The
sequences of oligonucleotide primers specific for b-actin,
IL-2, IL-4, IL-5, IL-10 and IFN-g were designed as shown
in table 1. All primers were used at a final concentration of
1 mM. PCR was performed in a 40 ml reaction mix con-
taining 5 ml cDNA, 1.25 units of Taq polymerase (Life
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Table 1. Cytokine primers used in this study.

Primers Sequence Length (bp) Size of product (bp)

b-actin
Primer 1 GTGGGGCGCCCCAGGCACCA 20 540
Primer 2 CTCCTTAATGTCACGCACGATTTC 24

IL-2
Primer 1 CAGGATGCTCACATTTAAGTTTTACA 26 91
Primer 2 CTCGAGAGGTTTGAGTTCTTCTTCTA 26

IL-4
Primer 1 ATGGGTCTCACCTCCCAACTG 21 462
Primer 2 TCAGCTCGAACACTTTGAATATTTCTCTCTCAT 33

IL-5
Primer 1 CAAACGCAGAACGTTTCAGA 20 137
Primer 2 GCAGTGCCAAGGTCTCTTTC 20

IL-10
Primer 1 TGGTGAAACCCCGTCTCTAC 20 163
Primer 2 CTGGAGTACAGGGGCATGAT 20

IFN-g
Primer 1 TGCAGAGCCAAATTGTCTCCTTTTAC 26 299
Primer 2 TTACTGGGATGCTCTTCGACCTCGAAACAGGAT 33



Technologies), 1.0 mM MgCl2 and 0.1 mM dNTP (Pro-
mega Catalysis AG, Wallisellen, Switzerland). Semiquan-
titative PCR analysis was carried out for 18, 22, 26 and 30
cycles and the PCR products electrophoresed on a 2%
agarose gel, visualized with ethidium bromide and the re-
sulting documents stored and processed with ImageQuant.
Amplification of b-actin mRNA was used as an internal
control. b-Actin levels were normalized for all samples
such that the intensities of the PCR products at 18, 22, 26
and 30 cycles in different samples were identical and lin-
ear when analysed by ImageQuant. The semiquantitative
analyses shown in figure 2 utilized cDNAs obtained from
Th1 and Th2 cells that were pre-treated with PILAMs or
ManLAMs, and stimulated with OKT3 and PMA.

Cytokine protein measurement in culture 
supernatants
Production in 6-h culture supernatants of IFN-g, IL-4
(Hoffmann-La Roche, Basel, Switzerland), IL-2 and IL-5
(R & D Systems, Minneapolis, Minn.) by Th1 or Th2
cells was assessed by ELISA. The sensitivity threshold
was 25 pg/ml for all assays.

In vitro kinase assays
Raft fractions (fractions 3–5, cf. fig. 1) were obtained
from sucrose gradients loaded with 50 ¥ 106 Th1 or Th2
cells, pooled and aliquoted, ultracentrifuged and resus-
pended in 50 ml 10 mM Hepes  pH 7.4, 156 mM NaCl,
containing 0, 25 or 125 mg/ml of PILAMs. After 30 min
at 37°C, raft membranes were again ultracentrifuged, re-
suspended in 30 ml kinase buffer and assayed for endoge-
nous kinases as described elsewhere [35]. The levels of
phosphorylation were measured by PhosphorImager and
analysed by ImageQuant.

Results

PILAM and ManLAMs incorporate into rafts 
of Th1 and Th2 cells
Th1 and Th2 cells incubated with PILAMs or ManLAMs
were washed free of unbound LAMs and subjected to sub-
cellular fractionation in the presence of TX-100, to isolate
the detergent-resistant (or raft) fractions. Dot-blot analysis
of each gradient fraction of either Th1 or Th2 cells (fig. 1)
showed that GM1 detected with CTB and the GPI-linked
proteins CD55 and CD59 were selectively enriched in the
low-density raft fractions 3–5. In contrast, the major T
cell surface protein, the transmembrane CD45, was re-
covered in the high-density fractions 9–11 containing the
TX-100-soluble proteins. The CD3e protein was found
mostly in the soluble fractions, with 10–15% reproducibly
found in the raft fractions. The CD4 coreceptor distrib-
uted predominantly in the raft fractions (60%) of both
Th1 and Th2 cells. The incorporated PILAM lipoglycans

were only detectable in the raft fractions 3–5 with the CS35
anti-LAM mAb and the same gradient distribution was
found for ManLAM. Likewise, deacylation of PILAMs or
ManLAMs (see below) resulted in more than 70% inhibi-
tion of raft association. Lastly, the overall protein and
ganglioside composition of rafts was not altered quantita-
tively or qualitatively by LAM incorporation.

PILAM-treated cells upregulate Th2 
and downregulate Th1 cytokines upon stimulation 
by T cell receptor agonists, while ManLAM-treated
cells only upregulate Th2 cytokines.
To assess the role of LAMs in cytokine production, Th1 or
Th2 cells were exposed for 30 min to PILAMs or Man-
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Figure 1. PILAM inserts preferentially in raft fractions of Th1 and
Th2 cells. Dot-blot analysis of sucrose density gradient fractions.
Each gradient was loaded with 50 ¥ 106 Th1 or Th2 cells, previously
incubated with PILAMs. Fractions 3–5 correspond to the interface
between 5 and 36% sucrose (TX-100-insoluble raft membranes)
and fractions 9–11 to the bulk of the TX-100-soluble proteins.
Twenty  microlitres was dotted for each fraction and incubated with
the antibodies listed in Materials and methods, or CTB for the 
detection of GM1.



LAMs (0.4 mg/ml per 1 ¥ 106 cells), leading to incorpora-
tion of lipoglycans in rafts as shown in figure 1. Under
these conditions, the basal levels of cytokine mRNA were
not affected. However, following activation with anti-CD3
mAb and PMA, significant changes in cytokine mRNA
levels were detected by semiquantitative RT-PCR analy-
sis in LAM-treated compared to untreated T helper cells.
Exposure to PILAMs significantly decreased IL-2 and
IFN-g in Th1 cells. In contrast, IL-4 mRNA levels were
increased by PILAMs, and to a lesser extent by Man-

LAMs, in Th2 cells (fig. 2A, B). PILAMs only increased
IL-5 mRNA levels in Th2 cells (fig. 2B). 
The results observed at the protein level are illustrated in
figure 2C for one representative Th1 and one Th2 clone,
and are comparable to the results observed at the mRNA
level (fig. 2B). With all Th1 and Th2 clones tested, PILAM
preincubation slightly but consistently inhibited IFN-g and
IL-2 to 80.0% ± 0.06 of the control value (p = 0.022, n = 6).
Conversely, PILAMs enhanced IL-4 (149.2% ± 10.0) and
IL-5 protein production (172.3% ± 3.3, p = 0.042, n = 6.
ManLAM pre-incubation had no effect on IFN-g (109.6%
± 9.8 of the control), while it enhanced IL-4 (119.8% ± 2.8)
and IL-5 (192.3% ± 13.3) protein production.

LAM effects are independent of LPS but depend
upon the acyl moieties of the LAM molecule
Both preparations of PILAMs and ManLAMs contained
9 ng/ml of endotoxin, measured by the Limulus assay. The
level of LPS contamination was not increased following
deacylation. LPS is unlikely to have been responsible for
the modulation of cytokine messages, since PILAMs and
ManLAMs had different effects, despite similar contents
of LPS. Moreover, upregulation of IL-4 and downregu-
lation of IL-2 and IFN-g by PILAMs were not affected 
by pre-treatment of cells with the LPS inhibitor poly-
myxin B.
The biological effect of PILAMs depends upon the hy-
drophobic part of the molecule that permits membrane
insertion. Deacylated LAMs were no longer inserted into
cellular membranes and thus ineffective. For instance, 
using Th1 cells, the inhibitory effect of PILAMs on Th1
cytokine message levels was abrogated by deacylation,
while mock-treated PILAMs (i.e. subjected to the same
separation steps as alkali-treated PILAMs) retained their
inhibitory properties on IL-2 and IFN-g messages (fig. 3).

Raft distribution of Lck and FynT kinases in Th1
and Th2 cells
In both Th1 and Th2 cells, the 60-kDa form of the Lck ki-
nase was found exclusively in the raft fractions (fig. 4, top
panel). The main Lck form detected in non-raft fractions
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Figure 2. Effects of PILAMs and ManLAMs on cytokine mRNA
and protein levels in Th1 and Th2 cells. (A, B) RT-PCR analysis of
the IL-2, IFN-g and IL-4, IL-5 responses of Th1 and Th2 cells to
anti-CD3 and PMA, following pre-incubation with PILAMs or
ManLAMs. Control cells were stimulated with anti-CD3 and PMA
without prior incubation with mycobacterial lipoglycans. (A) Semi-
quantitative PCR for 18, 22, 26 and 30 cycles with the appropriate
cytokine primers and b-actin control. (B) The amounts of PCR
products (ethidium bromide labelled) recovered after 18, 22, 26 and
30 cycles were measured by scanning and expressed as percent 
of control (no LAM treatment). (C) ELISA measurement of the 
indicated cytokines in supernatants of one representative Th1 and
one Th2 clone.

Figure 3. Deacylated PILAM fails to downregulate IL-2 and IFN-g
messages. RT-PCR of the IL-2 and IFN-g responses of Th1 cells to
anti-CD3 and PMA, with pre-incubation with deacylated PILAMs,
and mock-treated PILAMs. The semiquantitative analysis of PCR
products was carried out for 18, 22, 26 and 30 cycles.



was the nominal 56-kDa form. Less than 10% of the total
Lck detected in non-raft fractions was 60 kDa. In both
Th1 and Th2 cells, the amount of Lck found in rafts cor-
responded to approximately 40% of the total cellular Lck
(data not shown). The FynT kinase was detected as a 60-
kDa protein in both raft and non-raft fractions of both cell
types with a raft/non-raft ratio of about 4 to 1 (fig. 4, bot-
tom panel).

AraLAM incorporation in rafts modulates 
the in vitro activity of associated kinases
Incorporation of increasing amounts of PILAM (25 and
125 mg/ml) in Th1 raft membranes resulted in a dose-de-
pendent increase in Src kinase (open bars) and Cbp/PAG
(filled bars) phosphorylation, reaching 2.5- to 3-fold at
125 mg/ml (fig. 5A). The main phosphorylated proteins
were the Src kinases (Lck and FynT) at 60 kDa and
Cbp/PAG at 83 and 95 kDa. These phosphoproteins were
identified by Western blotting and two-dimensional elec-
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Figure 4. Raft and non-raft distribution of Lck and FynT protein 
tyrosine kinases in Th1 and Th2 cells. Western blot analysis. Lck
(top) and FynT (bottom). Raft: pooled fractions 3–5 (20 ml); Non-
raft: pooled fractions 9–11 (20 ml). The sucrose gradient was devel-
oped and fractionated as in figure 1.

Figure 5. In vitro kinase assays on rafts isolated from Th1 cells in
the presence of increasing concentrations of PILAMs (0, 25 and
125 mg/ml). (A) PhosphoImager measurement of Src kinase (p60Lck
and FynT, open bars) and Cbp/PAG (83- and 95-kDa bands, filled
bars) phosphorylation. (B) In vitro kinase assays following incuba-
tion of isolated rafts with 0, 25 and 125 mg/ml PILAMs. (C) West-
ern blots with anti-Fyn and anti-Lck antibodies in the raft aliquots
subjected to in vitro kinase assays. These results are representative
of three independent experiments.

Figure 6. In vitro kinase assays on rafts isolated from Th2 cells 
in the presence of increasing concentrations of PILAM (0, 25 and
125 mg/ml). (A) PhosphoImager measurement of Src kinase (p60Lck
and FynT, open bars) and Cbp/PAG (83- and 95-kDa bands, filled
bars) phosphorylation. (B) In vitro kinase assays following incuba-
tion of isolated rafts with 0, 25 and 125 mg/ml PILAMs. (C) West-
ern blots with anti-Fyn and anti-Lck antibodies in the raft aliquots
subjected to in vitro kinase assays. These results are representative
of three independent experiments.



trophoresis (not shown). The amounts of FynT and Lck
kinases were not modified following incubation with PIL-
AMs (fig. 5B). Incorporation of PILAMs in Th2 raft
membranes under the same conditions (fig. 6A, B)
caused a 25% increase in total phosphorylations with 25
mg/ml PILAMs, but all phosphorylations were down-
modulated at 125 mg/ml of AraLAMs. This downmodula-
tion was not the result of any loss of Src kinases (fig. 6C).
ManLAMs caused no significant changes in the phos-
phorylation of Src kinases and Cbp/PAG in either Th1 or
Th2 rafts (data not shown).

Discussion

This study shows that mycobacterial lipoglycans insert in
raft microdomains and differentially modulate cytokine
production by activated type 1 and type 2 helper T cells.
Among those lipoglycans, PILAMs especially decrease
mRNA levels and protein amounts of Th1 cytokines, while
increasing the transcription and translation of the Th2 cy-
tokine genes. The mannose-capped lipoglycan (ManLAM)
was only efficient at increasing IL-4 and IL-5 production
by Th2 cells. This is in agreement with previous reports
showing that T lymphocytes respond to mycobacterial 
lipoglycans [24, 26], but our data show in addition that 
T helper cells, with GPI-linked mycobacterial LAMs 
inserted in their signalling platforms, respond to CD3
cross-linking by differently regulating their cytokine pro-
duction.
A number of recent studies have shown a regulatory and
organizing role for rafts/microdomains in signalling
through the T cell receptor (TCR) [reviewed in ref. [36],
as well as in cytokine signalling pathways [37, 38]. In this
study, we show that insertion of mycobacterial lipoglycans
in isolated rafts/microdomains alters the catalytic activity
of raft-associated kinases. In particular, the autophospho-
rylation of Src kinases and the phosphorylation of the
Cbp/PAG adaptor protein [39, 40] are modulated. The dis-
tinct dose-dependent modulations of Src kinase and Cbp/
PAG phosphorylations measured in Th1 and Th2 rafts fol-
lowing LAM incorporation suggest a transbilayer effect
of LAM on the raft signalling platform with functional
modification of the raft-associated tyrosine and serine/
threonine protein kinases. The different effects of LAMs
on membrane-bound kinases may reflect differences in
the membrane environment of FynT and Lck ratios in Th1
versus Th2 rafts and influence the functional relationships
between kinases [41]. However, additional studies are
needed to define which signaling pathways are affected by
LAM insertion into the membrane and how the transcrip-
tion factors involved in controlling Th1/Th2 cytokine pro-
duction react to those proximal events.
In the Th1 and Th2 rafts analysed in this study, the form of
Lck detected is reproducibly the hyperphosphorylated p60

molecule that is preferentially phosphorylated in vitro.
This raft-specific form is similar to the hyperphosphory-
lated p60 Lck isoform expressed in activated T cells [42],
but given its measurable catalytic activity, it appears 
distinct from the ‘closed’ (and catalytically less active)
Lck isoform described in Jurkat cell rafts by Kabouridis
[43].
The transbilayer effect of LAMs on T helper cell raft ki-
nases is thus similar to the Lck modulation obtained with
exogenous gangliosides in Jurkat T cells [44], Lyn modu-
lation in neuronal cells [45] and protein kinase C modula-
tion by leishmanial lipophosphoglycans in reconstituted
membrane vesicles [46]. A similar transmembrane mod-
ulation by LAMs was recently reported on the Hck ki-
nase in polymorphonuclear leucocytes [47]. In the pre-
sent view of how rafts influence signalling via the TCR
[48], rafts are not part of the T cell immune synapse, but
rather form a concentric network around the synapse [49]
and a heterogeneous population of rafts contribute distinct
components to the TCR signalling machinery [50]. We
propose that rafts containing GPI-anchored LAM perform
differently as signalling platforms when stimulated with
TCR agonists and autocrine cytokine signals. For instance,
raft-associated LAMs may interact with other carbohy-
drate moieties on sphingolipids and glycoproteins in the
context of the ‘glycosynapse’ on the extracellular surface
of the raft [51], or inserted LAMs may modulate trans-
membrane receptor functions, as do gangliosides with
transmembrane receptor tyrosine kinases [52].
Recent models of T cell activation envision that in the im-
mune synapse, the TCR acts as a ‘decoder’ that analyzes
the quality and quantity of ligand and initiates signalling,
and rafts are ‘amplifiers’, providing the necessary adap-
tors and signalling proteins [53]. Our data suggest that
rafts may not only amplify the response, but also qualita-
tively influence the T cell effector function. Indeed, we
have shown that mycobacterial lipoglycans insert prefer-
entially into sphingolipid-rich rafts of T helper cells [36]
and modify the kinases associated with the raft signalling
platform. Such alterations of the raft platforms probably
affect both the TCR and cytokine pathways and thus alter
T cell responsiveness to different stimuli. The different in
vitro phosphorylation responses to LAMs measured in
isolated Th1 and Th2 rafts most likely reflect the differ-
ences in the nature of signalling proteins associated with
rafts [54], and further suggests that inserted LAMs may
alter cellular responses by modifying the lateral and
transmembrane organization of raft-associated signalling
proteins without causing major changes in raft lipid and
protein composition.
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