20 research outputs found

    Linking orogenesis across a supercontinent: the Grenvillian and Sveconorwegian margins on Rodinia

    Get PDF
    The Sveconorwegian orogeny in SW Baltica comprised a series of geographically and tectonically discrete events between 1140 and 920 Ma. Thrusting and high-grade metamorphism at 1140–1080 Ma in central parts of the orogen were followed by arc magmatism and ultra-high-temperature metamorphism at 1060–920 Ma in the westernmost part of the orogen. In the eastern part of the orogen, crustal thickening and high-pressure metamorphism took place at 1050 in one terrane and at 980 Ma in another. These discrete tectonothermal events are incompatible with an evolution resulting from collision with another major, continental landmass, and better explained as accretion and re-amalgamation of fragmented and attenuated crustal blocks of the SW Baltica margin behind an evolving continental-margin arc. In contrast, the coeval, along-strike Grenvillian orogeny is typically ascribed to long-lived collision with Amazonia. Here we argue that coeval, but tectonically different events in the Sveconorwegian and Grenville orogens may be linked through the behavior of the Amazonia plate. Subduction of Amazonian oceanic crust, and consequent slab pull, beneath the Sveconorwegian may have driven long-lived collision in the Grenville. Conversely, the development of a major orogenic plateau in the Grenville may have slowed convergence, thereby affecting the rate of oceanic subduction and thus orogenic evolution in the Sveconorwegian. Convergence ceased in the Grenville at ca. 980 Ma, in contrast to the Sveconorwegian where convergence continued until ca. 920 Ma, and must have been accommodated elsewhere along the Grenville–Amazonia segment of the margin, for example in the Goiás Magmatic Arc which had been established along the eastern Amazonian margin by 930 Ma. Our model shows how contrasting but coeval orogenic behavior can be linked through geodynamic coupling along and across tectonic plates

    Breaking the Grenville–Sveconorwegian link in Rodinia reconstructions

    Get PDF
    The Grenville, Sveconorwegian, and Sunsas orogens are typically inferred to reflect collision between Laurentia, Baltica, and Amazonia at ca. 1.0 Ga, forming a central portion of the Rodinia supercontinent. This triple‐junction configuration is often nearly identical in otherwise diverse Rodinia reconstructions. However, available geological data suggest that although the Grenville and Sveconorwegian provinces shared a similar tectonic evolution from pre‐1.8 to ca. 1.5 Ga, they record distinctly different tectonic histories leading up to, during, and possibly following Grenville–Sveconorwegian orogenesis. Moreover, palaeomagnetic data suggest the two continents were separated at peak orogenesis, further invalidating any direct correlation. A number of possible interpretations are permissible with available geological and palaeomagnetic data, of which a “classic” triple‐junction configuration appears least likely. In contrast to the commonly inferred intertwined Proterozoic evolution of Baltica and Laurentia, the possibility remains that they were unrelated for a billion years between 1.5 and 0.45 Ga

    The Sveconorwegian orogeny: reamalgamation of the fragmented southwestern margin of Fennoscandia

    Get PDF
    The Sveconorwegian orogeny encompasses magmatic, metamorphic and deformational events between ca. 1140 and 920 Ma at the southwestern margin of Fennoscandia. In recent years, the tectonic setting of this nearly 200 Myr-long evolution has been debated, with some workers arguing for collision with an unknown continent off the present-day southwest coast of Norway, and others advocating accretionary processes inboard of an active margin. Recently, it has been suggested that orogeny may have been gravity-driven by delamination and foundering of heavy subcontinental lithospheric mantle in an intraplate setting, in some ways similar to proposed sagduction processes in the Archaean. Resolving the tectonic setting of the Sveconorwegian orogen has implications for correlation with other orogens and Rodinia supercontinent reconstructions and for assessments of the evolution of plate tectonics on Earth, from the Archaean to the present. Here, we present new mapping and geochronological data from the Bamble and Telemark lithotectonic units in the central and western Sveconorwegian orogen – the former representing a critical region separating western parts of the orogen that underwent long-lived high- to ultrahigh-temperature metamorphism and magmatism from parts closer to the orogenic foreland that underwent episodic high-pressure events. The data show that the units constituting the Sveconorwegian orogen most likely formed at the southwestern margin of Fennoscandia between ca. 1800 and 1480 Ma, followed by fragmentation during widespread extension between ca. 1340 and 1100 Ma marked by bimodal magmatism and sedimentation. A summary of Sveconorwegian magmatic, metamorphic and depositional events in the different units shows disparate histories prior to their assembly with adjacent units. The most likely interpretation of this record seems to be that episodic, Sveconorwegian metamorphic and deformational events in the central and eastern parts of the orogen represent accretion and assembly of these units. This process most likely took place behind an active margin to the southwest that sustained mafic underplating in the proximal back-arc, resulting in high- to ultrahigh-temperature metamorphism in the western parts. In this interpretation, all features of the Sveconorwegian orogen are readily explained by modern-style plate tectonic processes and hypotheses involving some form of vertical, intraplate tectonics are not supported

    Anorthosite formation and emplacement coupled with differential tectonic exhumation of ultrahigh-temperature rocks in a Sveconorwegian continental back-arc setting

    Get PDF
    The tectonic setting and mechanisms and duration of emplacement of Proterozoic massif-type anorthosites and the significance of typically associated ultrahigh-temperature (UHT) host rocks have been debated for decades. This is particularly true of the Rogaland Anorthosite Province (RAP) in the SW Sveconorwegian Orogen. Earlier studies suggest that the RAP was emplaced over 1–3 Myr around 930 Ma towards the end of orogenesis, resulting in an up to 15–20 km-wide contact metamorphic aureole. However, our structural observations show that the RAP is located in the footwall of a 15 km-wide extensional detachment (Rogaland Extensional Detachment, RED), separating the intrusions and their UHT host rocks from weakly metamorphosed rocks in the hanging wall. U–Pb zircon dating of leucosome in extensional pull-aparts associated with the RED yields ages of 950–935 Ma, consistent with Re–Os molybdenite ages from brittle extensional structures in the hanging-wall block that range between 980 and 930 Ma. A metapelite in the immediate vicinity of the RAP yields a 950 Ma U–Pb age of matrix-hosted monazite, and part of the RAP was intruded by the Storgangen norite dike at ca. 950 Ma, providing a minimum age of emplacement. These ages are consistent with Ar–Ar hornblende and biotite ages that show rapid cooling of the footwall before 930 Ma, but slow cooling of the hanging wall. Field and geochronologic data suggest that the RAP formed and was emplaced over a long period of time, up to 100 Myr, with different emplacement mechanisms reflecting an evolving regional stress regime. The distribution of UHT rocks around the RAP reflects differential extensional exhumation between 980 and 930 Ma, not contact metamorphism. The duration and style of orogenic activity and externally (as opposed to gravitationally) driven extension suggest that the RAP formed in a continental back-arc setting

    Prevalence, associated factors and outcomes of pressure injuries in adult intensive care unit patients: the DecubICUs study

    Get PDF
    Funder: European Society of Intensive Care Medicine; doi: http://dx.doi.org/10.13039/501100013347Funder: Flemish Society for Critical Care NursesAbstract: Purpose: Intensive care unit (ICU) patients are particularly susceptible to developing pressure injuries. Epidemiologic data is however unavailable. We aimed to provide an international picture of the extent of pressure injuries and factors associated with ICU-acquired pressure injuries in adult ICU patients. Methods: International 1-day point-prevalence study; follow-up for outcome assessment until hospital discharge (maximum 12 weeks). Factors associated with ICU-acquired pressure injury and hospital mortality were assessed by generalised linear mixed-effects regression analysis. Results: Data from 13,254 patients in 1117 ICUs (90 countries) revealed 6747 pressure injuries; 3997 (59.2%) were ICU-acquired. Overall prevalence was 26.6% (95% confidence interval [CI] 25.9–27.3). ICU-acquired prevalence was 16.2% (95% CI 15.6–16.8). Sacrum (37%) and heels (19.5%) were most affected. Factors independently associated with ICU-acquired pressure injuries were older age, male sex, being underweight, emergency surgery, higher Simplified Acute Physiology Score II, Braden score 3 days, comorbidities (chronic obstructive pulmonary disease, immunodeficiency), organ support (renal replacement, mechanical ventilation on ICU admission), and being in a low or lower-middle income-economy. Gradually increasing associations with mortality were identified for increasing severity of pressure injury: stage I (odds ratio [OR] 1.5; 95% CI 1.2–1.8), stage II (OR 1.6; 95% CI 1.4–1.9), and stage III or worse (OR 2.8; 95% CI 2.3–3.3). Conclusion: Pressure injuries are common in adult ICU patients. ICU-acquired pressure injuries are associated with mainly intrinsic factors and mortality. Optimal care standards, increased awareness, appropriate resource allocation, and further research into optimal prevention are pivotal to tackle this important patient safety threat

    PROPERTIES OF THE PROTEROZOIC GEOMAGNETIC FIELD AND GEOLOGICAL APPLICATIONS OF PALEOMAGNETIC DATA FROM ROCKS OF THE NORTH AMERICAN MIDCONTINENT RIFT

    No full text
    Rocks of the North American Midcontinent rift (MCR) exposed in the Lake Superior area provide an excellent opportunity to use paleomagnetism as a means of studying the characteristics of geomagnetic field in Proterozoic and the history of the rift itself. The detailed paleomagnetic and paleointensity studies of different rock units associated with the MCR, including the 1108 Ma alkaline Coldwell Complex (Ontario, Canada), presumably 1107-1108 Ma basaltic flows of the Geordie Lake (Ontario, Canada) and Silver Mountain (Upper Michigan, USA), ~1095 Ma lava flows of the Portage Lake Volcanics (PLV) (Keweenaw Peninsula, Michigan), and ~1088 Ma lava flows of the Lake Shore Traps (LST) (Keweenaw Peninsula, Michigan) are presented. Paleomagnetic study of the Coldwell Complex indicates that the apparent asymmetry of geomagnetic reversal, recorded by many Keweenawan rocks is an artifact due to missing paleomagnetic record of an equator-ward plate motion in most MCR sequences. The result supports the validity of the geocentric axial dipole assumption for the ~1.1 Ga. Extrusive sequences exposed on the Keweenaw Peninsula revealed lower paleosecular variation than that recorded by 0-5 Ma lava flows, indicating that the Proterozoic field was more stable. Samples from the ~1088 Ma Lake Shore Traps yielded consistent paleofield values with a mean value of 26.3 ± 4.7 µ T, which corresponds to a virtual dipole moment of 5.9 ± 1.1 × 1022 Am2. The mean and range of paleofield values are similar to those of the recent Earth’s magnetic field and incompatible with a “Proterozoic dipole low”. These results are consistent with a stable compositionally-driven geodynamo operating by the end of Mesoproterozoic. New high-quality paleomagnetic poles calculated for the ~1108 Ma Coldwell Complex and coeval extrusive rocks, and ~ 1094 Ma PLV indicate that North America was moving directly equator-ward with an approximately 20-25 cm/year rate between 1108 and 1094 Ma. However, the paleomagnetic data indicates a significant slowdown in motion between 1094 and 1088 Ma. This change in the plate tectonics regime coincides with a cessation of the MCR magmatism, which may indicate the beginning of renewed compression from the Grenville Front caused by continent-continent collision during the assemblage of the supercontinent Rodinia. New paleomagnetic data from the LST flows further confirm the idea of a primary nature of the MCR curvature in the Lake Superior area

    Intrinsic paleointensity bias and the long-term history of the geodynamo

    No full text
    Many geodynamo models predict an inverse relationship between geomagnetic reversal frequency and field strength. However, most of the absolute paleointensity data, obtained predominantly by the Thellier method from bulk volcanic rocks, fail to confirm this relationship. Although low paleointensities are commonly observed during periods of high reversal rate (notably, in the late Jurassic), higher than present-day intensity values are rare during periods of no or few reversals (superchrons). We have identified a fundamental mechanism that results in a pervasive and previously unrecognized low-field bias that affects most paleointensity data in the global database. Our results provide an explanation for the discordance between the experimental data and numerical models, and lend additional support to an inverse relationship between the reversal rate and field strength as a fundamental property of the geodynamo. We demonstrate that the accuracy of future paleointensity analyses can be improved by integration of the Thellier protocol with low-temperature demagnetizations

    Absolute geomagnetic paleointensity as recorded by ~1.09 Ga Lake Shore Traps (Keweenaw Peninsula, Michigan)

    No full text
    Absolute geomagnetic paleointensity measurements were made on 255 samples from 38 lava flows of the ~1.09 Ga Lake Shore Traps exposed on the Keweenaw Peninsula (Michigan, USA). Samples from the lava flows yield a well-defined characteristic remanent magnetization (ChRM) component within a ~375°C-590°C unblocking temperature range. Detailed rock magnetic analyses indicate that the ChRM is carried by nearly stoichiometric pseudo-single-domain magnetite and/or low-Ti titanomagnetite. Scanning electron microscopy reveals that the (titano)magnetite is present in the form of fine intergrowths with ilmenite, formed by oxyexsolution during initial cooling. Paleointensity values were determined using the Thellier double-heating method supplemented by low-temperature demagnetization in order to reduce the effect of magnetic remanence carried by large pseudosingle-domain and multidomain grains. One hundred and two samples from twenty independent cooling units meet our paleointensity reliability criteria and yield consistent paleofield values with a mean value of 26.3 ± 4.7μT, which corresponds to a virtual dipole moment of 5.9 ± 1.1×1022 Am2. The mean and range of paleofield values are similar to those of the recent Earth\u27s magnetic field and incompatible with a Proterozoic dipole low . These results are consistent with a stable compositionally-driven geodynamo operating by the end of Mesoproterozoic. © 2013 Institute of Geophysics of the ASCR, v.v.i
    corecore