23 research outputs found

    Circadian Control of Dendrite Morphology in the Visual System of Drosophila melanogaster

    Get PDF
    In the first optic neuropil (lamina) of the fly's visual system, monopolar cells L1 and L2 and glia show circadian rhythms in morphological plasticity. They change their size and shape during the day and night. The most pronounced changes have been detected in circadian size of the L2 axons. Looking for a functional significance of the circadian plasticity observed in axons, we examined the morphological plasticity of the L2 dendrites. They extend from axons and harbor postsynaptic sites of tetrad synaptic contacts from the photoreceptor terminals.The plasticity of L2 dendrites was evaluated by measuring an outline of the L2 dendritic trees. These were from confocal images of cross sections of L2 cells labeled with GFP. They were in wild-type and clock mutant flies held under different light conditions and sacrified at different time points. We found that the L2 dendrites are longest at the beginning of the day in both males and females. This rhythm observed under a day/night regime (LD) was maintained in constant darkness (DD) but not in continuous light (LL). This rhythm was not present in the arrhythmic per(01) mutant in LD or in DD. In the clock photoreceptor cry(b) mutant the rhythm was maintained but its pattern was different than that observed in wild-type flies.The results obtained showed that the L2 dendrites exhibit circadian structural plasticity. Their morphology is controlled by the per gene-dependent circadian clock. The L2 dendrites are longest at the beginning of the day when the daytime tetrad presynaptic sites are most numerous and L2 axons are swollen. The presence of the rhythm, but with a different pattern in cry(b) mutants in LD and DD indicates a new role of cry in the visual system. The new role is in maintaining the circadian pattern of changes of the L2 dendrite length and shape

    The Central Clock Neurons Regulate Lipid Storage in Drosophila

    Get PDF
    A proper balance of lipid breakdown and synthesis is essential for achieving energy homeostasis as alterations in either of these processes can lead to pathological states such as obesity. The regulation of lipid metabolism is quite complex with multiple signals integrated to control overall triglyceride levels in metabolic tissues. Based upon studies demonstrating effects of the circadian clock on metabolism, we sought to determine if the central clock cells in the Drosophila brain contribute to lipid levels in the fat body, the main nutrient storage organ of the fly. Here, we show that altering the function of the Drosophila central clock neurons leads to an increase in fat body triglycerides. We also show that although triglyceride levels are not affected by age, they are increased by expression of the amyloid-beta protein in central clock neurons. The effect on lipid storage seems to be independent of circadian clock output as changes in triglycerides are not always observed in genetic manipulations that result in altered locomotor rhythms. These data demonstrate that the activity of the central clock neurons is necessary for proper lipid storage

    Erratum to: 36th International Symposium on Intensive Care and Emergency Medicine

    Get PDF
    [This corrects the article DOI: 10.1186/s13054-016-1208-6.]

    Surprising gene expression patterns within and between PDF-containing circadian neurons in Drosophila

    No full text
    To compare circadian gene expression within highly discrete neuronal populations, we separately purified and characterized two adjacent but distinct groups of Drosophila adult circadian neurons: the 8 small and 10 large PDF-expressing ventral lateral neurons (s-LNvs and l-LNvs, respectively). The s-LNvs are the principal circadian pacemaker cells, whereas recent evidence indicates that the l-LNvs are involved in sleep and light-mediated arousal. Although half of the l-LNv–enriched mRNA population, including core clock mRNAs, is shared between the l-LNvs and s-LNvs, the other half is l-LNv– and s-LNv–specific. The distribution of four specific mRNAs is consistent with prior characterization of the four encoded proteins, and therefore indicates successful purification of the two neuronal types. Moreover, an octopamine receptor mRNA is selectively enriched in l-LNvs, and only these neurons respond to in vitro application of octopamine. Dissection and purification of l-LNvs from flies collected at different times indicate that these neurons contain cycling clock mRNAs with higher circadian amplitudes as well as at least a 10-fold higher fraction of oscillating mRNAs than all previous analyses of head RNA. Many of these cycling l-LNv mRNAs are well expressed but do not cycle or cycle much less well elsewhere in heads. The results suggest that RNA cycling is much more prominent in circadian neurons than elsewhere in heads and may be particularly important for the functioning of these neurons

    Imaging analysis of clock neurons reveals light buffers the wake-promoting effect of dopamine

    No full text
    How animals maintain proper amounts of sleep yet still be flexible to changes in the environmental conditions remains unknown. Here we showed that environmental light suppresses the wake-promoting effects of dopamine in fly brains. A subset of clock neurons, the 10 large lateral-ventral neurons (l-LNvs), are wake-promoting and respond to dopamine, octopamine as well as light. Behavioral and imaging analyses suggested that dopamine is a stronger arousal signal than octopamine. Surprisingly, light exposure not only suppressed the l-LNv responses but also synchronized responses of neighboring l-LNvs. This regulation occured by distinct mechanisms: light-mediated suppression of octopamine responses is regulated by the circadian clock, whereas light regulation of dopamine responses occurs by upregulation of inhibitory dopamine receptors. Plasticity therefore alters the relative importance of diverse cues based on the environmental mix of stimuli. The regulatory mechanisms described here may contribute to the control of sleep stability while still allowing behavioral flexibility

    The novel gene twenty-four defines a critical translational step in the Drosophila clock

    No full text
    Daily oscillations of gene expression underlie circadian behaviours in multicellular organisms(1). While attention has been focused on transcriptional and post-translational mechanisms(1-3), other post-transcriptional modes have been less clearly delineated. Here we report mutants of a novel Drosophila gene twenty-four (tyf) that show weak behavioural rhythms. Weak rhythms are accompanied by marked reductions in the levels of the clock protein Period (PER) as well as more modest effects on Timeless (TIM). Nonetheless, PER induction in pacemaker neurons can rescue tyf mutant rhythms. TYF associates with a 5'-cap-binding complex, poly(A)-binding protein (PABP), as well as per and tim transcripts. Furthermore, TYF activates reporter expression when tethered to reporter messenger RNA even in vitro. Taken together, these data indicate that TYF potently activates PER translation in pacemaker neurons to sustain robust rhythms, revealing a new and important role for translational control in the Drosophila circadian clock.close252

    36th International Symposium on Intensive Care and Emergency Medicine : Brussels, Belgium. 15-18 March 2016.

    Get PDF
    corecore