24 research outputs found

    Heat flow, seismic cutoff depth and thermal modeling of the Fennoscandian Shield

    Get PDF
    Being far from plate boundaries but covered with seismograph networks, the Fennoscandian Shield features an ideal test laboratory for studies of intraplate seismicity. For this purpose, this study applies 4190 earthquake events from years 2000–2015 with magnitudes ranging from 0.10 to 5.22 in Finnish and Swedish national catalogues. In addition, 223 heat flow determinations from both countries and their immediate vicinity were used to analyze the potential correlation of earthquake focal depths and the spatially interpolated heat flow field. Separate subset analyses were performed for five areas of notable seismic activity: the southern Gulf of Bothnia coast of Sweden (area 1), the northern Gulf of Bothnia coast of Sweden (area 2), the Swedish Norrbotten and western Finnish Lapland (area 3), the Kuusamo region of Finland (area 4) and the southernmost Sweden (area 5). In total, our subsets incorporated 3619 earthquake events. No obvious relation of heat flow and focal depth exists, implying that variations of heat flow are primarily caused by shallow lying heat producing units instead of deeper sources. This allows for construction of generic geotherms for the range of representative palaeoclimatically corrected (steady-state) surface heat flow values (40–60 mWm−2). The one-dimensional geotherms constructed for a three-layer crust and lithospheric upper mantle are based on mantle heat flow constrained with the aid of mantle xenolith thermobarometry (9–15 mWm−2), upper crustal heat production values (3.3–1.1 μWm−3), and the brittle-ductile transition temperature (350 °C) assigned to the cutoff depth of seismicity (28 ± 4 km). For the middle and lower crust heat production values of 0.6 and 0.2 μWm−3 were assigned, respectively. The models suggest a Moho temperature range of 460 to 500 °C.Being far from plate boundaries but covered with seismograph networks, the Fennoscandian Shield features an ideal test laboratory for studies of intraplate seismicity. For this purpose, this study applies 4190 earthquake events from years 2000–2015 with magnitudes ranging from 0.10 to 5.22 in Finnish and Swedish national catalogues. In addition, 223 heat flow determinations from both countries and their immediate vicinity were used to analyse the potential correlation of earthquake focal depths and the spatially interpolated heat flow field. Separate subset analyses were performed for five areas of notable seismic activity: the southern Gulf of Bothnia coast of Sweden (area 1), the northern Gulf of Bothnia coast of Sweden (area 2), the Swedish Norrbotten and western Finnish Lapland (area 3), the Kuusamo region of Finland (area 4) and the southernmost Sweden (area 5). In total, our subsets incorporated 3619 earthquake events. No obvious relation of heat flow and focal depth exists, implying that variations of heat flow are primarily caused by shallow lying heat producing units instead of deeper sources. This allows for construction of generic geotherms for the range of representative palaeoclimatically corrected (steady-state) surface heat flow values (40–60 mW m−2). The 1-D geotherms constructed for a three-layer crust and lithospheric upper mantle are based on mantle heat flow constrained with the aid of mantle xenolith thermobarometry (9–15 mW m−2), upper crustal heat production values (3.3–1.1 μWm−3) and the brittle-ductile transition temperature (350 °C) assigned to the cut-off depth of seismicity (28 ± 4 km). For the middle and lower crust heat production values of 0.6 and 0.2 μWm−3 were assigned, respectively. The models suggest a Moho temperature range of 460–500 °C.Peer reviewe

    Physical properties of 368 meteorites: Implications for meteorite magnetism and planetary geophysics

    Get PDF
    Petrophysical studies (susceptibility, intensity of natural remanent magnetisation (NRM) and dry bulk density) of 368 meteorites are reviewed together with magnetic hysteresis data for 50 achondrites and chondrites. The relationships between dry bulk density, metallic FeNi-content and porosity will be discussed in the case of L-chondrites. Using the petrophysical classification scheme the meteorite class and the petrologic group of a sample can be determined in most of the cases providing a rapid means for determining a preliminary classification of a new sample. In addition, the petrophysical database provides a direct source of basic physical properties of the small bodies in the solar system. Paleointensity determinations with Thellier technique will be presented for 16 meteorites representing different chondrite groups. The results yield high paleofield values ranging from 51μT to 728μT for the magnetically hardest meteorites consistent with previous studies. However, these values must be looked with caution, because of possible physico-chemical or mineralogical alterations during heating
    corecore