36 research outputs found

    Contextuality and noncontextuality measures and generalized Bell inequalities for cyclic systems

    Get PDF
    Cyclic systems of dichotomous random variables have played a prominent role in contextuality research, describing such experimental paradigms as the Klyachko-Can-Binicioglu-Shumovsky, Einstein-Podolsky-RosenBell, and Leggett-Garg ones in physics, as well as conjoint binary choices in human decision making. Here, we understand contextuality within the framework of the Contextuality-by-Default (CbD) theory, based on the notion of probabilistic couplings satisfying certain constraints. CbD allows us to drop the commonly made assumption that systems of random variables are consistently connected (i.e., it allows for all possible forms of "disturbance" or "signaling" in them). Consistently connected systems constitute a special case in which CbD essentially reduces to the conventional understanding of contextuality. We present a theoretical analysis of the degree of contextuality in cyclic systems (if they are contextual) and the degree of noncontextuality in them (if they are not). By contrast, all previously proposed measures of contextuality are confined to consistently connected systems, and most of them cannot be extended to measures of noncontextuality. Our measures of (non)contextuality are defined by the L-1-distance between a point representing a cyclic system and the surface of the polytope representing all possible noncontextual cyclic systems with the same single-variable marginals. We completely characterize this polytope, as well as the polytope of all possible probabilistic couplings for cyclic systems with given single-variable marginals. We establish that, in relation to the maximally tight Bell-type CbD inequality for (generally, inconsistently connected) cyclic systems, the measure of contextuality is proportional to the absolute value of the difference between its two sides. For noncontextual cyclic systems, the measure of noncontextuality is shown to be proportional to the smaller of the same difference and the L-1-distance to the surface of the box circumscribing the noncontextuality polytope. These simple relations, however, do not generally hold beyond the class of cyclic systems, and noncontextuality of a system does not follow from noncontextuality of its cyclic subsystems

    Muscle fiber-type distribution predicts weight gain and unfavorable left ventricular geometry: a 19 year follow-up study

    Get PDF
    BACKGROUND: Skeletal muscle consists of type-I (slow-twitch) and type-II (fast-twitch) fibers, with proportions highly variable between individuals and mostly determined by genetic factors. Cross-sectional studies have associated low percentage of type-I fibers (type-I%) with many cardiovascular risk factors. METHODS: We investigated whether baseline type-I% predicts left ventricular (LV) structure and function at 19-year follow-up, and if so, which are the strongest mediating factors. At baseline in 1984 muscle fiber-type distribution (by actomyosin ATPase staining) was studied in 63 healthy men (aged 32–58 years). The follow-up in 2003 included echocardiography, measurement of obesity related variables, physical activity and blood pressure. RESULTS: In the 40 men not using cardiovascular drugs at follow-up, low type-I% predicted higher heart rate, blood pressure, and LV fractional shortening suggesting increased sympathetic tone. Low type-I% predicted smaller LV chamber diameters (P ≤ 0.009) and greater relative wall thickness (P = 0.034) without increase in LV mass (concentric remodeling). This was explained by the association of type-I% with obesity related variables. Type-I% was an independent predictor of follow-up body fat percentage, waist/hip ratio, weight gain in adulthood, and physical activity (in all P ≤ 0.001). After including these risk factors in the regression models, weight gain was the strongest predictor of LV geometry explaining 64% of the variation in LV end-diastolic diameter, 72% in end-systolic diameter, and 53% in relative wall thickness. CONCLUSION: Low type-I% predicts obesity and weight gain especially in the mid-abdomen, and consequently unfavourable LV geometry indicating increased cardiovascular risk

    A Qualified Kolmogorovian Account of Probabilistic Contextuality

    Full text link
    We describe a mathematical language for determining all possible patterns of contextuality in the dependence of stochastic outputs of a system on its deterministic inputs. The central notion is that of all possible couplings for stochastically unrelated outputs indexed by mutually incompatible values of inputs. A system is characterized by a pattern of which outputs can be "directly influenced" by which inputs (a primitive relation, hypothetical or normative), and by certain constraints imposed on the outputs (such as Bell-type inequalities or their quantum analogues). The set of couplings compatible with these constraints represents a form of contextuality in the dependence of outputs on inputs with respect to the declared pattern of direct influences.Comment: Lecture Notes in Computer Science 8369, 201-212 (2014

    Effects of work ability and health promoting interventions for women with musculoskeletal symptoms: A 9-month prospective study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Women working in the public human service sector in 'overstrained' situations run the risk of musculoskeletal symptoms and long-term sick leave. In order to maintain the level of health and work ability and strengthen the potential resources for health, it is important that employees gain greater control over decisions and actions affecting their health – a process associated with the concept of self-efficacy. The aim of this study was to describe the effects of a self-efficacy intervention and an ergonomic education intervention for women with musculoskeletal symptoms, employed in the public sector.</p> <p>Methods</p> <p>The design of the study was a 9-month prospective study describing the effects of two interventions, a comprehensive self-efficacy intervention (<it>n </it>= 21) and an ergonomic education intervention (<it>n </it>= 21). Data were obtained by a self-report questionnaire on health- and work ability-related factors at baseline, and at ten weeks and nine months follow-up. Within-group differences over time were analysed.</p> <p>Results</p> <p>Over the time period studied there were small magnitudes of improvements within each group. Within the self-efficacy intervention group positive effects in perceived work ability were shown. The ergonomic education group showed increased positive beliefs about future work ability and a more frequent use of pain coping strategies.</p> <p>Conclusion</p> <p>Both interventions showed positive effects on women with musculoskeletal symptoms, but in different ways. Future research in this area should tailor interventions to participants' motivation and readiness to change.</p

    Differences in pre-sleep activity and sleep location are associated with variability in daytime/nighttime sleep electrophysiology in the domestic dog

    Get PDF
    The domestic dog (Canis familiaris) is a promising animal model. Yet, the canine neuroscience literature is predominantly comprised of studies wherein (semi-)invasive methods and intensive training are used to study awake dog behavior. Given prior findings with humans and/or dogs, our goal was to assess, in 16 family dogs (1.5–7 years old; 10 males; 10 different breeds) the effects of pre-sleep activity and timing and location of sleep on sleep electrophysiology. All three factors had a main and/or interactive effect on sleep macrostructure. Following an active day, dogs slept more, were more likely to have an earlier drowsiness and NREM, and spent less time in drowsiness and more time in NREM and REM. Activity also had location- and time of day-specific effects. Time of day had main effects; at nighttime, dogs slept more and spent less time in drowsiness and awake after first drowsiness, and more time in NREM and in REM. Location had a main effect; when not at home, REM sleep following a first NREM was less likely. Findings are consistent with and extend prior human and dog data and have implications for the dog as an animal model and for informing future comparative research on sleep

    An experimental test of noncontextuality without unphysical idealizations

    Get PDF
    To make precise the sense in which nature fails to respect classical physics, one requires a formal notion of classicality. Ideally, such a notion should be defined operationally, so that it can be subject to direct experimental test, and it should be applicable in a wide variety of experimental scenarios so that it can cover the breadth of phenomena thought to defy classical understanding. Bell’s notion of local causality fulfils the first criterion but not the second. The notion of noncontextuality fulfils the second criterion, but it is a long-standing question whether it can be made to fulfil the first. Previous attempts to test noncontextuality have all assumed idealizations that real experiments cannot achieve, namely noiseless measurements and exact operational equivalences. Here we show how to devise tests that are free of these idealizations. We perform a photonic implementation of one such test, ruling out noncontextual models with high confidence
    corecore