9 research outputs found

    Experiments and simulations on a cold-flow blast furnace hearth model

    Get PDF
    The blast furnace hearth plays an important role in the operational stability and lifetime of the reactor. The quasi-stagnant bed of coke particles termed the deadman undergoes complex interaction with the flowing hot metal, and remains largely ill-understood. In this work, a cold model blast furnace hearth is presented, and studied using both numerical and experimental techniques. Magnetic Particle Tracking (MPT) is used to investigate the individual particle behaviour within the cylindrical, opaque bed. At high liquid holdup, the particle bed was found to alternate between floating and sitting states, following the liquid level during the tapping and filling cycle. This bed motion was found to induce a migration of particles, thereby slowly renewing the deadman. The rate of horizontal migration increases with the vertical bed amplitude, and the renewal of particles is concentrated around the opening of the tap hole. No direct influence of the coke-free space on the tapping rate was found in these experiments. Instead, the disturbance of the packing in front of the tap hole was observed to lead to a higher tapping rate. Additionally, a coupled numerical framework is presented, in which Computational Fluid Dynamics (CFD), the Volume of Fluid (VOF) method and the Discrete Element Method (DEM) are combined. A simulation set-up is presented which closely replicates the experimental conditions. The position and movement of the floating bed are found to be well-predicted by the VOF/CFD-DEM model. Particle trajectories are presented, and migration of particles within the deadman is observed. Alongside the particle motion, the liquid flow pattern during draining of the vessel is visualised. It is concluded that a coke-free space underneath the deadman significantly impacts the shape of the liquid flow pattern, which affects the erosion processes within the blast furnace hearth.</p

    Experiments on floating bed rotating drums using magnetic particle tracking

    Get PDF
    Magnetic particle tracking (MPT) was employed to study a rotating drum filled with cork particles, using both air and water as interstitial medium. This noninvasive monitoring technique allows for the tracking of both particle translation and rotation in dry granular and liquid–solid systems. Measurements on the dry and floating bed rotating drum were compared and detailed analysis of the bed shape and velocity profiles was performed. It was found that the change of particle–wall and particle–particle interaction caused by the presence of water significantly affects the bed behavior. The decreased friction leads to slipping of the particles with respect to the wall, rendering the circulation rate largely insensitive to increased drum speed. It was also found that the liquid–particle interaction is determining for the behavior of the flowing layer. The well-defined experiments and in-depth characterization performed in this study provide an excellent validation case for multiphase flow models.</p

    Discrete particle simulation of a spout-fluid bed: treatment of two-way coupling and effect of drag closure

    Get PDF
    A new method is proposed to map properties between the Lagrangian and Eulerian grid in a discrete particle model. The model was used to study the gas-particle flow in a spout-fluid bed and assess grid independency of the computations. Comparison between experimental and numerical results using various drag models revealed that the most frequently used drag model (i.e. the Ergun equation for low porosities and the Wen and Yu relation for high porosities) is less suitable for modeling fluid beds with stable high velocity jets, as encountered in spout(-fluid) beds. The Koch and Hill (2001) relation and the minimum of the relations of Ergun, and Wen and Yu are more suitable, although the former is preferred because of its more fundamental basis

    Complete liquid-solid momentum coupling for unresolved CFD-DEM simulations

    No full text
    Liquid-solid systems are frequently encountered in industrial processes and it is broadly recognised that numerical simulations are a useful tool for gaining insight in these processes. In this study, the unresolved CFD-DEM approach is extended with a complete momentum coupling for liquid-solid flows. Established correlations are used for the drag and lift forces, while new implementations are introduced for the unsteady interaction forces. A virtual mass force model based on the work of Felderhof (Felderhof 1991) is introduced, which accounts for the local particle volume fraction and the liquid-solid density ratio. The Basset history force, which is usually neglected due to computational difficulties related to its implementation, is evaluated according to the approach proposed by Parmar et al. A liquid fluidised bed is used as a demonstration case for the extended model. In this work, it is shown that with appropriate stabilisation measures, the Basset history force is approximated accurately (within 5%), while computational efficiency is maintained ( < 30% increase in computational time). Furthermore, the relevance of the complete momentum coupling is demonstrated by analysis of the solids mixing in the liquid fluidised bed. It is shown that when accounting for the complete interaction force, solids mixing is up to 20% slower compared to simulations with the drag-only approach

    Experiments on floating bed rotating drums using magnetic particle tracking

    Get PDF
    Magnetic particle tracking (MPT) was employed to study a rotating drum filled with cork particles, using both air and water as interstitial medium. This noninvasive monitoring technique allows for the tracking of both particle translation and rotation in dry granular and liquid–solid systems. Measurements on the dry and floating bed rotating drum were compared and detailed analysis of the bed shape and velocity profiles was performed. It was found that the change of particle–wall and particle–particle interaction caused by the presence of water significantly affects the bed behavior. The decreased friction leads to slipping of the particles with respect to the wall, rendering the circulation rate largely insensitive to increased drum speed. It was also found that the liquid–particle interaction is determining for the behavior of the flowing layer. The well-defined experiments and in-depth characterization performed in this study provide an excellent validation case for multiphase flow models

    Experiments and simulations on a cold-flow blast furnace hearth model

    Get PDF
    The blast furnace hearth plays an important role in the operational stability and lifetime of the reactor. The quasi-stagnant bed of coke particles termed the deadman undergoes complex interaction with the flowing hot metal, and remains largely ill-understood. In this work, a cold model blast furnace hearth is presented, and studied using both numerical and experimental techniques. Magnetic Particle Tracking (MPT) is used to investigate the individual particle behaviour within the cylindrical, opaque bed. At high liquid holdup, the particle bed was found to alternate between floating and sitting states, following the liquid level during the tapping and filling cycle. This bed motion was found to induce a migration of particles, thereby slowly renewing the deadman. The rate of horizontal migration increases with the vertical bed amplitude, and the renewal of particles is concentrated around the opening of the tap hole. No direct influence of the coke-free space on the tapping rate was found in these experiments. Instead, the disturbance of the packing in front of the tap hole was observed to lead to a higher tapping rate. Additionally, a coupled numerical framework is presented, in which Computational Fluid Dynamics (CFD), the Volume of Fluid (VOF) method and the Discrete Element Method (DEM) are combined. A simulation set-up is presented which closely replicates the experimental conditions. The position and movement of the floating bed are found to be well-predicted by the VOF/CFD-DEM model. Particle trajectories are presented, and migration of particles within the deadman is observed. Alongside the particle motion, the liquid flow pattern during draining of the vessel is visualised. It is concluded that a coke-free space underneath the deadman significantly impacts the shape of the liquid flow pattern, which affects the erosion processes within the blast furnace hearth

    CMS physics technical design report: Addendum on high density QCD with heavy ions

    Get PDF
    This report presents the capabilities of the CMS experiment to explore the rich heavy-ion physics programme offered by the CERN Large Hadron Collider (LHC). The collisions of lead nuclei at energies ,will probe quark and gluon matter at unprecedented values of energy density. The prime goal of this research is to study the fundamental theory of the strong interaction - Quantum Chromodynamics (QCD) - in extreme conditions of temperature, density and parton momentum fraction (low-x). This report covers in detail the potential of CMS to carry out a series of representative Pb-Pb measurements. These include "bulk" observables, (charged hadron multiplicity, low pT inclusive hadron identified spectra and elliptic flow) which provide information on the collective properties of the system, as well as perturbative probes such as quarkonia, heavy-quarks, jets and high pT hadrons which yield "tomographic" information of the hottest and densest phases of the reaction.0info:eu-repo/semantics/publishe
    corecore