3,505 research outputs found

    A search for 183-GHz emission from water in late-type stars

    Get PDF
    A search was made for 183 GHz line emission from water vapor in the direction of twelve Mira and two semiregular variables. Upper limits to the emission are in the range of 2000 to 5000 Jy. It is estimated that thermal emission from the inner regions of late type stellar envelopes will be on the order of ten Jy. Maser emission, according to one model, would be an order of magnitude stronger. From the limited set sampled, the possibility of very strong maser emission at 183 GHz cannot yet be ruled out

    183 GHz water line variation: An energetic outburst in orion KL

    Get PDF
    Observations of the 3(13)-2(20) transition of water vapor in the direction of Ori MC1 in 1980 February show a 50% flux increase and an apparent additional red shift of approximately 2 km/s relative to the line observed in 1977 December. From a detailed examination of the amplitude and frequency calibration, it appears unlikely that the effect is due to systematic error. The increase is attributed to the appearance of a new component at a velocity of 12 km/s with respect to the local standard of rest. The new component also has broad wings. Increased emission from a region in the high-velocity core of Ori MC1 can be due either to additional far-IR radiation to pump the 1983 GHz transition or to a change in the physical conditions in the gas. Statistical equilibrium calculations using the large-velocity-gradient formalism were carried out to develop a model for the emission. The calculations support a model in which the gas in the region of enhanced emission is hotter than the dust. The temporal coincidence between the 183 GHZ increase and the 22 GH1 water maser outburst suggests a common, impulsive cause, which has heated the gas in a part of the HV source, enhancing the emission in both transitions

    The 32-GHz performance of the DSS-14 70-meter antenna: 1989 configuration

    Get PDF
    The results of preliminary 32 GHz calibrations of the 70 meter antenna at Goldstone are presented. Measurements were done between March and July 1989 using Virgo A and Venus as the primary efficiency calibrators. The flux densites of theses radio sources at 32 GHz are not known with high accuracy, but were extrapolated from calibrated data at lower frequencies. The measured value of efficiency (0.35) agreed closely with the predicted value (0.32), and the results are very repeatable. Flux densities of secondary sources used in the observations were subsequently derived. These measurements were performed using a beamswitching radiometer that employed an uncooled high-electron mobility transistor (HEMT) low-noise amplifier. This system was installed primarily to determine the performance of the antenna in its 1989 configuration, but the experience will also aid in successful future calibration of the Deep Space Network (DSN) at this frequency

    BeppoSAX observation of PSR B1937+21

    Get PDF
    We present the results of a BeppoSAX observation of the fastest rotating pulsar known: PSR B1937+21. The ~200 ks observation (78.5 ks MECS/34 ks LECS on-source time) allowed us to investigate with high statistical significance both the spectral properties and the pulse profile shape. The pulse profile is clearly double peaked at energies > ~4 keV. Peak widths are compatible with the instrumental time resolution and the second pulse lags the main pulse 0.52 in phase, like is the case in the radio. In the 1.3-4 keV band we detect a ~45% DC component; conversely the 4-10 keV pulsed fraction is consistent with 100%. The on-pulse spectrum is fitted with an absorbed power-law of spectral index ~1.2, harder than that of the total flux which is ~1.9. The total unabsorbed (2-10 keV) flux is F_{2-10} = 4.1 10^-13 cgs, implying a luminosity of L_X = 5.0 10^31 \Theta (d/3.6 kpc)^2 erg s^-1 and a X-ray efficiency of \eta = 4.5 10^-5 \Theta, where \Theta is the solid angle spanned by the emission beam. These results are in agreement with those obtained by ASCA and a more recent Rossi-XTE observation. The hydrogen column density N_H ~2 10^22 cm^-2 is ~10 times higher than expected from the radio dispersion measure and average Galactic density of e-. Though it is compatible (within 2\sigma) with the Galactic (HI derived) value of ~1 10^22 cm^-2, inspection of dust extinction maps reveal that the pulsar falls in a highly absorbed region. In addition, 1.4 GHz radio map shows that the nearby (likely unrelated) HII source 4C21.53W is part of a circular emission region ~4' across.Comment: 8 pages, 5 figures; accepted for publication in A&

    Star forming regions of the southern galaxy

    Get PDF
    A catalog of southern dust cloud properties is being compiled to aid in the planning and analysis of radio spectral line surveys in the southern hemisphere. Ultimately, images of dust temperature and column density will be produced. For the interim, a list of the 60 and 100 micron fluxes was prepared for the cores and adjacent backgrounds of 65 prominent dust clouds. Dust temperatures and column densities were derived
    corecore