410 research outputs found
Spin-transfer in an open ferromagnetic layer: from negative damping to effective temperature
Spin-transfer is a typical spintronics effect that allows a ferromagnetic
layer to be switched by spin-injection. Most of the experimental results about
spin transfer are described on the basis of the Landau-Lifshitz-Gilbert
equation of the magnetization, in which additional current-dependent damping
factors are added, and can be positive or negative. The origin of the damping
can be investigated further by performing stochastic experiments, like one shot
relaxation experiments under spin-injection in the activation regime of the
magnetization. In this regime, the N\'eel-Brown activation law is observed
which leads to the introduction of a current-dependent effective temperature.
In order to justify the introduction of these counterintuitive parameters
(effective temperature and negative damping), a detailed thermokinetic analysis
of the different sub-systems involved is performed. We propose a thermokinetic
description of the different forms of energy exchanged between the electric and
the ferromagnetic sub-systems at a Normal/Ferromagnetic junction. The
corresponding Fokker Planck equations, including relaxations, are derived. The
damping coefficients are studied in terms of Onsager-Casimir transport
coefficients, with the help of the reciprocity relations. The effective
temperature is deduced in the activation regime.Comment: 65 pages, 10 figure
Recombination rate and selection strength in HIV intra-patient evolution
The evolutionary dynamics of HIV during the chronic phase of infection is
driven by the host immune response and by selective pressures exerted through
drug treatment. To understand and model the evolution of HIV quantitatively,
the parameters governing genetic diversification and the strength of selection
need to be known. While mutation rates can be measured in single replication
cycles, the relevant effective recombination rate depends on the probability of
coinfection of a cell with more than one virus and can only be inferred from
population data. However, most population genetic estimators for recombination
rates assume absence of selection and are hence of limited applicability to
HIV, since positive and purifying selection are important in HIV evolution.
Here, we estimate the rate of recombination and the distribution of selection
coefficients from time-resolved sequence data tracking the evolution of HIV
within single patients. By examining temporal changes in the genetic
composition of the population, we estimate the effective recombination to be
r=1.4e-5 recombinations per site and generation. Furthermore, we provide
evidence that selection coefficients of at least 15% of the observed
non-synonymous polymorphisms exceed 0.8% per generation. These results provide
a basis for a more detailed understanding of the evolution of HIV. A
particularly interesting case is evolution in response to drug treatment, where
recombination can facilitate the rapid acquisition of multiple resistance
mutations. With the methods developed here, more precise and more detailed
studies will be possible, as soon as data with higher time resolution and
greater sample sizes is available.Comment: to appear in PLoS Computational Biolog
Finite element simulation of three-dimensional free-surface flow problems
An adaptive finite element algorithm is described for the stable solution of three-dimensional free-surface-flow problems based primarily on the use of node movement. The algorithm also includes a discrete remeshing procedure which enhances its accuracy and robustness. The spatial discretisation allows an isoparametric piecewise-quadratic approximation of the domain geometry for accurate resolution of the curved free surface.
The technique is illustrated through an implementation for surface-tension-dominated viscous flows modelled in terms of the Stokes equations with suitable boundary conditions on the deforming free surface. Two three-dimensional test problems are used to demonstrate the performance of the method: a liquid bridge problem and the formation of a fluid droplet
Biomimetic rehabilitation engineering: the importance of somatosensory feedback for brain-machine interfaces.
Brain-machine interfaces (BMIs) re-establish communication channels between the nervous system and an external device. The use of BMI technology has generated significant developments in rehabilitative medicine, promising new ways to restore lost sensory-motor functions. However and despite high-caliber basic research, only a few prototypes have successfully left the laboratory and are currently home-deployed.
The failure of this laboratory-to-user transfer likely relates to the absence of BMI solutions for providing naturalistic feedback about the consequences of the BMI's actions. To overcome this limitation, nowadays cutting-edge BMI advances are guided by the principle of biomimicry; i.e. the artificial reproduction of normal neural mechanisms.
Here, we focus on the importance of somatosensory feedback in BMIs devoted to reproducing movements with the goal of serving as a reference framework for future research on innovative rehabilitation procedures. First, we address the correspondence between users' needs and BMI solutions. Then, we describe the main features of invasive and non-invasive BMIs, including their degree of biomimicry and respective advantages and drawbacks. Furthermore, we explore the prevalent approaches for providing quasi-natural sensory feedback in BMI settings. Finally, we cover special situations that can promote biomimicry and we present the future directions in basic research and clinical applications.
The continued incorporation of biomimetic features into the design of BMIs will surely serve to further ameliorate the realism of BMIs, as well as tremendously improve their actuation, acceptance, and use
Diagnostic accuracy of endoscopic ultrasonography-guided tissue acquisition prior to resection of pancreatic carcinoma:a nationwide analysis
Introduction: Endoscopic ultrasonography guided tissue acquisition (EUS + TA) is used to provide a tissue diagnosis in patients with suspected pancreatic cancer. Key performance indicators (KPI) for these procedures are rate of adequate sample (RAS) and sensitivity for malignancy (SFM). Aim: assess practice variation regarding KPI of EUS + TA prior to resection of pancreatic carcinoma in the Netherlands. Patients and methods: Results of all EUS + TA prior to resection of pancreatic carcinoma from 2014–2018, were extracted from the national Dutch Pathology Registry (PALGA). Pathology reports were classified as: insufficient for analysis (b1), benign (b2), atypia (b3), neoplastic other (b4), suspected malignant (b5), and malignant (b6). RAS was defined as the proportion of EUS procedures yielding specimen sufficient for analysis. SFM was calculated using a strict definition (malignant only, SFM-b6), and a broader definition (SFM-b5+6). Results: 691 out of 1638 resected patients (42%) underwent preoperative EUS + TA. RAS was 95% (range 89–100%), SFM-b6 was 44% (20–77%), and SFM-b5+6 was 65% (53–90%). All centers met the performance target RAS>85%. Only 9 out of 17 met the performance target SFM-b5+6 > 85%. Conclusion: This nationwide study detected significant practice variation regarding KPI of EUS + TA procedures prior to surgical resection of pancreatic carcinoma. Therefore, quality improvement of EUS + TA is indicated
Ezrin interacts with the SARS coronavirus spike protein and restrains infection at the entry stage
© 2012 Millet et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Background: Entry of Severe Acute Respiratory Syndrome coronavirus (SARS-CoV) and its envelope fusion with host cell membrane are controlled by a series of complex molecular mechanisms, largely dependent on the viral envelope glycoprotein Spike (S). There are still many unknowns on the implication of cellular factors that regulate the entry process. Methodology/Principal Findings: We performed a yeast two-hybrid screen using as bait the carboxy-terminal endodomain of S, which faces the cytosol during and after opening of the fusion pore at early stages of the virus life cycle. Here we show that the ezrin membrane-actin linker interacts with S endodomain through the F1 lobe of its FERM domain and that both the eight carboxy-terminal amino-acids and a membrane-proximal cysteine cluster of S endodomain are important for this interaction in vitro. Interestingly, we found that ezrin is present at the site of entry of S-pseudotyped lentiviral particles in Vero E6 cells. Targeting ezrin function by small interfering RNA increased S-mediated entry of pseudotyped particles in epithelial cells. Furthermore, deletion of the eight carboxy-terminal amino acids of S enhanced S-pseudotyped particles infection. Expression of the ezrin dominant negative FERM domain enhanced cell susceptibility to infection by SARS-CoV and S pseudotyped particles and potentiated S-dependent membrane fusion. Conclusions/Significance: Ezrin interacts with SARS-CoV S endodomain and limits virus entry and fusion. Our data present a novel mechanism involving a cellular factor in the regulation of S-dependent early events of infection.This work was supported by the Research Grant Council of Hong Kong (RGC#760208)and the RESPARI project of the International Network of Pasteur Institutes
Optical control of 4f orbital state in rare-earth metals
Information technology demands continuous increase of data-storage density.
In high-density magnetic recording media, the large magneto-crystalline
anisotropy (MCA) stabilizes the stored information against decay through
thermal fluctuations. In the latest generation storage media, MCA is so large
that magnetic order needs to be transiently destroyed by heat to enable bit
writing. Here we show an alternative approach to control high-anisotropy
magnets: With ultrashort laser pulses the anisotropy itself can be manipulated
via electronic state excitations. In rare-earth materials like terbium metal,
magnetic moment and high MCA both originate from the 4f electronic state.
Following infrared laser excitation 5d-4f electron-electron scattering
processes lead to selective orbital excitations that change the 4f orbital
occupation and significantly alter the MCA. Besides these excitations within
the 4f multiplet, 5d-4f electron transfer causes a transient change of the 4f
occupation number, which, too, strongly alters the MCA. Such MCA change cannot
be achieved by heating: The material would rather be damaged than the 4f
configuration modified. Our results show a way to overcome this limitation for
a new type of efficient magnetic storage medium. Besides potential
technological relevance, the observation of MCA-changing excitations also has
implications for a general understanding of magnetic dynamics processes on
ultrashort time scales, where the 4f electronic state affects the angular
momentum transfer between spin system and lattice.Comment: Manuscript (14 pages, 3 figures) and Supplementary Information (22
pages, 9 figures
Hepatitis C virus-specific cellular immune responses in individuals with no evidence of infection
The detection of hepatitis C virus (HCV)-specific T cell responses in HCV-uninfected, presumably unexposed, subjects could be due to an underestimation of the frequency of spontaneously resolving infections, as most acute HCV infections are clinically silent. To address this hypothesis, HCV-specific cellular immune responses were characterized, in individuals negative for an HCV PCR assay and humoral response, with (n = 32) or without (n = 33) risk of exposure to HCV. Uninfected volunteers (n = 20) with a chronically HCV-infected partner were included as positive controls for potential exposure to HCV and HCV infection, respectively. HCV-specific T cell responses in freshly isolated peripheral blood mononuclear cells were studied ex vivo by ELISPOT and CFSE-based proliferation assays using panels of HCV Core and NS3-derived peptides. A pool of unrelated peptides was used as a negative control, and a peptide mix of human cytomegalovirus, Epstein-Bar virus and Influenza virus as a positive control. Overall, 20% of presumably HCV-uninfected subject tested had detectable T-cell responses to the virus, a rate much higher than previous estimates of HCV prevalence in developed countries. This result would be consistent with unapparent primary HCV infections that either cleared spontaneously or remained undetected by conventional serological assays
HCV Infection among Saudi Population: High Prevalence of Genotype 4 and Increased Viral Clearance Rate
HCV is a major etiological agent of liver disease with a high rate of chronic evolution. The virus possesses 6 genotypes with many subtypes. The rate of spontaneous clearance among HCV infected individuals denotes a genetic determinant factor. The current study was designed in order to estimate the rate of HCV infection and ratio of virus clearance among a group of infected patients in Saudi Arabia from 2008 to 2011. It was additionally designed to determine the genotypes of the HCV in persistently infected patients. HCV seroprevalence was conducted on a total of 15,323 individuals. Seropositive individuals were tested by Cobas AmpliPrep/Cobas TaqMan HCV assay to determine the ratio of persistently infected patients to those who showed spontaneous viral clearance. HCV genotyping on random samples from persistently infected patients were conducted based on the differences in the 5′untranslated region (5′UTR). Anti-HCV antibodies were detected in 7.3% of the totally examined sera. A high percentage of the HCV infected individuals experienced virus clearance (48.4%). HCV genotyping revealed the presence of genotypes 1 and 4, the latter represented 97.6% of the tested strains. Evidences of the widespread of the HCV genotype 4 and a high rate of HCV virus clearance were found in Saudi Arabia
Diagnostic accuracy of endoscopic ultrasonography-guided tissue acquisition prior to resection of pancreatic carcinoma:a nationwide analysis
Introduction: Endoscopic ultrasonography guided tissue acquisition (EUS + TA) is used to provide a tissue diagnosis in patients with suspected pancreatic cancer. Key performance indicators (KPI) for these procedures are rate of adequate sample (RAS) and sensitivity for malignancy (SFM). Aim: assess practice variation regarding KPI of EUS + TA prior to resection of pancreatic carcinoma in the Netherlands. Patients and methods: Results of all EUS + TA prior to resection of pancreatic carcinoma from 2014–2018, were extracted from the national Dutch Pathology Registry (PALGA). Pathology reports were classified as: insufficient for analysis (b1), benign (b2), atypia (b3), neoplastic other (b4), suspected malignant (b5), and malignant (b6). RAS was defined as the proportion of EUS procedures yielding specimen sufficient for analysis. SFM was calculated using a strict definition (malignant only, SFM-b6), and a broader definition (SFM-b5+6). Results: 691 out of 1638 resected patients (42%) underwent preoperative EUS + TA. RAS was 95% (range 89–100%), SFM-b6 was 44% (20–77%), and SFM-b5+6 was 65% (53–90%). All centers met the performance target RAS>85%. Only 9 out of 17 met the performance target SFM-b5+6 > 85%. Conclusion: This nationwide study detected significant practice variation regarding KPI of EUS + TA procedures prior to surgical resection of pancreatic carcinoma. Therefore, quality improvement of EUS + TA is indicated.</p
- …