177 research outputs found
CRYSTAL-STRUCTURE OF AN ORTHORHOMBIC FORM OF ADENOSINE-5'-MONOPHOSPHATE
Adenosine-Y-phosphate monohydrate was crystallized in the orthorhombic space group P212121, with
a=22"997 (2), b=9.406 (1), c=6.599 (1)A,, Z=4. The structure was solved by direct methods and
refined to a final Rw of 0.0639 for 1320 significant reflexions measured on an automatic diffractometer.
The conformation of the molecule differs significantly from that previously reported for the monoclinic
monohydrate [Kraut & Jensen, Acta Cryst. (1963), 16, 79-88]. The sugar conformation, for example,
is here C(2)'-endo, and the glycosidic torsion angle has altered by almost 50 °
Age-dependent dissociation of ATP synthase dimers and loss of inner-membrane cristae in mitochondria
This is the final version of the article. Available from National Academy of Sciences via the DOI in this recordAging is one of the most fundamental, yet least understood biological processes that affect all forms of eukaryotic life. Mitochondria are intimately involved in aging, but the underlying molecular mechanisms are largely unknown. Electron cryotomography of whole mitochondria from the aging model organism Podospora anserina revealed profound age-dependent changes in membrane architecture. With increasing age, the typical cristae disappear and the inner membrane vesiculates. The ATP synthase dimers that form rows at the cristae tips dissociate into monomers in inner-membrane vesicles, and the membrane curvature at the ATP synthase inverts. Dissociation of the ATP synthase dimer may involve the peptidyl prolyl isomerase cyclophilin D. Finally, the outer membrane ruptures near large contact-site complexes, releasing apoptogens into the cytoplasm. Inner-membrane vesiculation and dissociation of ATP synthase dimers would impair the ability of mitochondria to supply the cell with sufficient ATP to maintain essential cellular functions.This work was supported by the Max Planck Society (B.D., A.W., A.H., and W.K.), the Deutsche Forschungsgemeinschaft (H.D.O.; Os75/12-1,2), and the Cluster of Excellence Frankfurt “Macromolecular Complexes” (H.D.O. and W.K.)
Self-assembly of the general membrane-remodeling protein PVAP into sevenfold virus-associated pyramids
This is the final version of the article. Available from National Academy of Sciences via the DOI in this record.Viruses have developed a wide range of strategies to escape from the host cells in which they replicate. For egress some archaeal viruses use a pyramidal structure with sevenfold rotational symmetry. Virus-associated pyramids (VAPs) assemble in the host cell membrane from the virus-encoded protein PVAP and open at the end of the infection cycle. We characterize this unusual supramolecular assembly using a combination of genetic, biochemical, and electron microscopic techniques. By whole-cell electron cryotomography, we monitored morphological changes in virus-infected host cells. Subtomogram averaging reveals the VAP structure. By heterologous expression of PVAP in cells from all three domains of life, we demonstrate that the protein integrates indiscriminately into virtually any biological membrane, where it forms sevenfold pyramids. We identify the protein domains essential for VAP formation in PVAP truncation mutants by their ability to remodel the cell membrane. Self-assembly of PVAP into pyramids requires at least two different, in-plane and out-of-plane, protein interactions. Our findings allow us to propose a model describing how PVAP arranges to form sevenfold pyramids and suggest how this small, robust protein may be used as a general membrane-remodeling system.D.P. and T.E.F.Q. received financial support from L’Agence Nationale de la Recherche. W.K. and B.D. received financial support from the Max Planck Society
Active Membrane Fluctuations Studied by Micropipet Aspiration
We present a detailed analysis of the micropipet experiments recently
reported in J-B. Manneville et al., Phys. Rev. Lett. 82, 4356--4359 (1999),
including a derivation of the expected behaviour of the membrane tension as a
function of the areal strain in the case of an active membrane, i.e.,
containing a nonequilibrium noise source. We give a general expression, which
takes into account the effect of active centers both directly on the membrane,
and on the embedding fluid dynamics, keeping track of the coupling between the
density of active centers and the membrane curvature. The data of the
micropipet experiments are well reproduced by the new expressions. In
particular, we show that a natural choice of the parameters quantifying the
strength of the active noise explains both the large amplitude of the observed
effects and its remarkable insensitivity to the active-center density in the
investigated range. [Submitted to Phys Rev E, 22 March 2001]Comment: 14 pages, 5 encapsulated Postscript figure
Structural Dynamic of a Self-Assembling Peptide d-EAK16 Made of Only D-Amino Acids
We here report systematic study of structural dynamics of a 16-residue self-assembling peptide d-EAK16 made of only D-amino acids. We compare these results with its chiral counterpart L-form, l-EAK16. Circular dichroism was used to follow the structural dynamics under various temperature and pH conditions. At 25°C the d-EAK16 peptide displayed a typical beta-sheet spectrum. Upon increasing the temperature above 70°C, there was a spectrum shift as the 218 nm valley widens toward 210 nm. Above 80°C, the d-EAK16 peptide transformed into a typical alpha-helix CD spectrum without going through a detectable random-coil intermediate. When increasing the temperature from 4°C to 110°C then cooling back from 110°C to 4°C, there was a hysteresis: the secondary structure from beta-sheet to alpha-helix and then from alpha-helix to beta-sheet occurred. d-EAK16 formed an alpha-helical conformation at pH0.76 and pH12 but formed a beta-sheet at neutral pH. The effects of various pH conditions, ionic strength and denaturing agents were also noted. Since D-form peptides are resistant to natural enzyme degradation, such drastic structural changes may be exploited for fabricating molecular sensors to detect minute environmental changes. This provides insight into the behaviors of self-assembling peptides made of D-amino acids and points the way to designing new peptide materials for biomedical engineering and nanobiotechnology
Bioinformatic Characterization of P-Type ATPases Encoded Within the Fully Sequenced Genomes of 26 Eukaryotes
P-type ATPases play essential roles in numerous processes, which in humans include nerve impulse propagation, relaxation of muscle fibers, secretion and absorption in the kidney, acidification of the stomach and nutrient absorption in the intestine. Published evidence suggests that uncharacterized families of P-type ATPases with novel specificities exist. In this study, the fully sequenced genomes of 26 eukaryotes, including animals, plants, fungi and unicellular eukaryotes, were analyzed for P-type ATPases. We report the organismal distributions, phylogenetic relationships, probable topologies and conserved motifs of nine functionally characterized families and 13 uncharacterized families of these enzyme transporters. We have classified these proteins according to the conventions of the functional and phylogenetic IUBMB-approved transporter classification system (www.tcdb.org, Saier et al. in Nucleic Acids Res 34:181–186, 2006; Nucleic Acids Res 37:274–278, 2009)
Elucidation of the ATP7B N-Domain Mg2+-ATP Coordination Site and Its Allosteric Regulation
The diagnostic of orphan genetic disease is often a puzzling task as less attention is paid to the elucidation of the pathophysiology of these rare disorders at the molecular level. We present here a multidisciplinary approach using molecular modeling tools and surface plasmonic resonance to study the function of the ATP7B protein, which is impaired in the Wilson disease. Experimentally validated in silico models allow the elucidation in the Nucleotide binding domain (N-domain) of the Mg2+-ATP coordination site and answer to the controversial role of the Mg2+ ion in the nucleotide binding process. The analysis of protein motions revealed a substantial effect on a long flexible loop branched to the N-domain protein core. We demonstrated the capacity of the loop to disrupt the interaction between Mg2+-ATP complex and the N-domain and propose a role for this loop in the allosteric regulation of the nucleotide binding process
DNA microarray revealed and RNAi plants confirmed key genes conferring low Cd accumulation in barley grains
List of genes down-regulated in both W6nk2 and Zhenong8 after 15Â days exposure to 5Â ÎźM Cd. (DOC 130 kb
- …