68 research outputs found

    A role for transportin in deposition of TTP to cytoplasmic RNA granules and mRNA decay

    Get PDF
    Importin-β family members, which shuttle between the nucleus and the cytoplasm, are essential for nucleocytoplasmic transport of macromolecules. We attempted to explore whether importin-β family proteins change their cellular localization in response to environmental change. In this report, we show that transportin (TRN) was minimally detected in cytoplasmic processing bodies (P-bodies) under normal cell conditions but largely translocated to stress granules (SGs) in stressed cells. Fluorescence recovery after photobleaching analysis indicated that TRN moves rapidly in and out of cytoplasmic granules. Depletion of TRN greatly enhanced P-body formation but did not affect the number or size of SGs, suggesting that TRN or its cargo(es) participates in cellular function of P-bodies. Accordingly, TRN associated with tristetraprolin (TTP) and its AU-rich element (ARE)-containing mRNA substrates. Depletion of TRN increased the number of P-bodies and stabilized ARE-containing mRNAs, as observed with knockdown of the 5′–3′ exonuclease Xrn1. Moreover, depletion of TRN retained TTP in P-bodies and meanwhile reduced the fraction of mobile TTP to SGs. Therefore, our data together suggest that TRN plays a role in trafficking of TTP between the cytoplasmic granules and whereby modulates the stability of ARE-containing mRNAs

    MicroRNAs and their isomiRs function cooperatively to target common biological pathways

    Get PDF
    Background: Variants of microRNAs (miRNAs), called isomiRs, are commonly reported in deep-sequencing studies; however, the functional significance of these variants remains controversial. Observational studies show that isomiR patterns are non-random, hinting that these molecules could be regulated and therefore functional, although no conclusive biological role has been demonstrated for these molecules. Results: To assess the biological relevance of isomiRs, we have performed ultra-deep miRNA-seq on ten adult human tissues, and created an analysis pipeline called miRNA-MATE to align, annotate, and analyze miRNAs and their isomiRs. We find that isomiRs share sequence and expression characteristics with canonical miRNAs, and are generally strongly correlated with canonical miRNA expression. A large proportion of isomiRs potentially derive from AGO2 cleavage independent of Dicer. We isolated polyribosome-associated mRNA, captured the mRNA-bound miRNAs, and found that isomiRs and canonical miRNAs are equally associated with translational machinery. Finally, we transfected cells with biotinylated RNA duplexes encoding isomiRs or their canonical counterparts and directly assayed their mRNA targets. These studies allow us to experimentally determine genome-wide mRNA targets, and these experiments showed substantial overlap in functional mRNA networks suppressed by both canonical miRNAs and their isomiRs. Conclusions: Together, these results find isomiRs to be biologically relevant and functionally cooperative partners of canonical miRNAs that act coordinately to target pathways of functionally related genes. This work exposes the complexity of the miRNA-transcriptome, and helps explain a major miRNA paradox: how specific regulation of biological processes can occur when the specificity of miRNA targeting is mediated by only 6 to 11 nucleotides

    Tumor Transcriptome Sequencing Reveals Allelic Expression Imbalances Associated with Copy Number Alterations

    Get PDF
    Due to growing throughput and shrinking cost, massively parallel sequencing is rapidly becoming an attractive alternative to microarrays for the genome-wide study of gene expression and copy number alterations in primary tumors. The sequencing of transcripts (RNA-Seq) should offer several advantages over microarray-based methods, including the ability to detect somatic mutations and accurately measure allele-specific expression. To investigate these advantages we have applied a novel, strand-specific RNA-Seq method to tumors and matched normal tissue from three patients with oral squamous cell carcinomas. Additionally, to better understand the genomic determinants of the gene expression changes observed, we have sequenced the tumor and normal genomes of one of these patients. We demonstrate here that our RNA-Seq method accurately measures allelic imbalance and that measurement on the genome-wide scale yields novel insights into cancer etiology. As expected, the set of genes differentially expressed in the tumors is enriched for cell adhesion and differentiation functions, but, unexpectedly, the set of allelically imbalanced genes is also enriched for these same cancer-related functions. By comparing the transcriptomic perturbations observed in one patient to his underlying normal and tumor genomes, we find that allelic imbalance in the tumor is associated with copy number mutations and that copy number mutations are, in turn, strongly associated with changes in transcript abundance. These results support a model in which allele-specific deletions and duplications drive allele-specific changes in gene expression in the developing tumor

    A transposable approach to RNA-seq from total RNA

    No full text

    A transposable approach to RNA-seq from total RNA

    No full text
    corecore