57 research outputs found

    Stress induced polarization of immune-neuroendocrine phenotypes in Gallus gallus

    Get PDF
    Immune-neuroendocrine phenotypes (INPs) stand for population subgroups differing in immune-neuroendocrine interactions. While mammalian INPs have been characterized thoroughly in rats and humans, avian INPs were only recently described in Coturnix coturnix (quail). To assess the scope of this biological phenomenon, herein we characterized INPs in Gallus gallus (a domestic hen strain submitted to a very long history of strong selective breeding pressure) and evaluated whether a social chronic stress challenge modulates the individuals’ interplay affecting the INP subsets and distribution. Evaluating plasmatic basal corticosterone, interferon-γ and interleukin-4 concentrations, innate/acquired leukocyte ratio, PHA-P skin-swelling and induced antibody responses, two opposite INP profiles were found: LEWIS-like (15% of the population) and FISCHER-like (16%) hens. After chronic stress, an increment of about 12% in each polarized INP frequency was found at expenses of a reduction in the number of birds with intermediate responses. Results show that polarized INPs are also a phenomenon occurring in hens. The observed inter-individual variation suggest that, even after a considerable selection process, the population is still well prepared to deal with a variety of immune-neuroendocrine challenges. Stress promoted disruptive effects, leading to a more balanced INPs distribution, which represents a new substrate for challenging situations.Fil: Nazar, Franco Nicolas. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones Biológicas y Tecnológicas. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Instituto de Investigaciones Biológicas y Tecnológicas; ArgentinaFil: Estevez, Inma. Centro de Investigación. Neiker - Tecnalia; EspañaFil: Correa, Silvia Graciela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología; ArgentinaFil: Marin, Raul Hector. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones Biológicas y Tecnológicas. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Instituto de Investigaciones Biológicas y Tecnológicas; Argentin

    Consumer–brand identification revisited: An integrative framework of brand identification, customer satisfaction, and price image and their role for brand loyalty and word of mouth

    Get PDF
    Consumer–brand identification has received considerable attraction among scholars and practitioners in recent years. We contribute to previous research by proposing an integrative model that includes consumer–brand identification, customer satisfaction, and price image to investigate the interrelationships among these constructs as well as their effects on brand loyalty and positive word of mouth. To provide general results, we empirically test the model using a sample of 1443 respondents from a representative consumer panel and 10 service/product brands. The results demonstrate that identification, satisfaction, and price image significantly influence both loyalty and word of mouth. Moreover, we find significant interrelationships among the constructs: Identification positively influences both satisfaction and price image, which also increases satisfaction. By disclosing the relative importance of three separate ways of gaining and retaining customers, this study helps managers more appropriately choose the right mix of branding, pricing, and relationship marketing. From an academic point of view, our research is the first to explicitly examine the effects of the concept of identification for price management and to integrate variables from the fields of branding, relationship marketing, and behavioral pricing, which have separately been identified as particularly important determinants of marketing outcomes

    Fluoride concentrations in the pineal gland, brain and bone of goosander (Mergus merganser) and its prey in Odra River estuary in Poland

    Get PDF

    Immune neuroendocrine phenotypes in Coturnix coturnix: Do avian species show LEWIS/FISCHER-like profiles?

    Get PDF
    Immunoneuroendocrinology studies have identified conserved communicational paths in birds and mammals, e.g. the Hypothalamus-Pituitary-Adrenal axis with anti-inflammatory activity mediated by glucocorticoids. Immune neuroendocrine phenotypes (INPs) have been proposed for mammals implying the categorization of a population in subgroups underlying divergent immune-neuroendocrine interactions. These phenotypes were studied in the context of the LEWIS/FISCHER paradigm (rats expressing high or low pro-inflammatory profiles, respectively). Although avian species have some common immunological mechanisms with mammals, they have also evolved some distinct strategies and, until now, it has not been studied whether birds may also share with mammals similar INPs. Based on corticosterone levels we determined the existence of two divergent groups in Coturnix coturnix that also differed in other immune-neuroendocrine responses. Quail with lowest corticosterone showed higher lymphoproliferative and antibody responses, interferon-γ and interleukin-1β mRNA expression levels and lower frequencies of leukocyte subpopulations distribution and interleukin-13 levels, than their higher corticosterone counterparts. Results suggest the existence of INPs in birds, comparable to mammalian LEWIS/FISCHER profiles, where basal corticosterone also underlies responses of comparable variables associated to the phenotypes. Concluding, INP may not be a mammalian distinct feature, leading to discuss whether these profiles represent a parallel phenomenon evolved in birds and mammals, or a common feature inherited from a reptilian ancestor millions of years ago

    Neuroendocrine correlates of sex-role reversal in barred buttonquails

    No full text
    Supplementary Figure S1: Autoradiograms of coronal sections through the brain of a female (Panels A-L) and male (Panels M-X) buttonquail at hatching day (P0) illustrating the expression of AR, ERα, ERβ and ARO mRNA visualised by in situ hybridisation. For each gene, sections are presented in a rostral to caudal order. Panels A-D and M-P are at the level of the anterior commissure. Panels I-L and U-X are at the level of the caudal hypothalamus. Abbreviations: BSTM, bed nucleus of the stria terminalis; CA, commisura anterior; ICo, nucleus intercollicularis; LS, lateral septum; MBH, mediobasal hypothalamus; POM, medial preoptic nucleus; TnA, nucleus taeniae of the amygdala.Supplementary Video S1: Sequence showing the performance of the booming call by a female barred buttonquail.Supplementary Video S2: Sequence showing the performance of a chase by a female barred buttonquail.Supplementary Video S3: Sequence showing the performance of courtship feeding by a female buttonquail.Sex differences in brain structure and behaviour are well documented among vertebrates. An excellent model exploring the neural mechanisms of sex differences in behaviour is represented by sex-role-reversed species. In the majority of bird species, males compete over access to mates and resources more strongly than do females. It is thought that the responsible brain regions are therefore more developed in males than in females. Because these behaviours and brain regions are activated by androgens, males usually have increased testosterone levels during breeding. Therefore, in species with sex-role reversal, certain areas of the female brain should be more developed or steroid hormone profiles should be sexually reversed. Here, I studied circulating hormone levels and gene expression of steroid hormone receptors and aromatase in a captive population of barred buttonquails (Turnix suscitator). While females performed courtship and agonistic behaviours, there was no evidence for sexually reversed hormone profiles. However, I found female-biased sex differences in gene expression of androgen receptors in several hypothalamic and limbic brain regions that were already in place at hatching. Such sex differences are not known from non-sex-role-reversed species. These data suggest that increased neural sensitivity to androgens could be involved in the mechanisms mediating sex-role-reversed behaviours.This study was funded by grants Vo1506/2-1 and Vo1506/3-1 from Deutsche Forschungsgemeinschaft (DFG).http://rspb.royalsocietypublishing.org2017-11-30hb2017Zoology and Entomolog
    corecore