111 research outputs found

    Identification of the orphan gene Prod 1 in basal and other salamander families.

    Get PDF
    The urodele amphibians (salamanders) are the only adult tetrapods able to regenerate the limb. It is unclear if this is an ancestral property that is retained in salamanders but lost in other tetrapods or if it evolved in salamanders. The three-finger protein Prod 1 is implicated in the mechanism of newt limb regeneration, and no orthologs have been found in other vertebrates, thus providing evidence for the second viewpoint. It has also been suggested that this protein could play a role in salamander-specific aspects of limb development. There are ten families of extant salamanders, and Prod 1 has only been identified in two of them to date. It is important to determine if it is present in other families and, particularly, the basal group of two families which diverged approximately 200 MYA

    Age-dependent increase of oxidative stress regulates microRNA-29 family preserving cardiac health.

    Get PDF
    The short-lived turquoise killifish Nothobranchius furzeri (Nfu) is a valid model for aging studies. Here, we investigated its age-associated cardiac function. We observed oxidative stress accumulation and an engagement of microRNAs (miRNAs) in the aging heart. MiRNA-sequencing of 5 week (young), 12-21 week (adult) and 28-40 week (old) Nfu hearts revealed 23 up-regulated and 18 down-regulated miRNAs with age. MiR-29 family turned out as one of the most up-regulated miRNAs during aging. MiR-29 family increase induces a decrease of known targets like collagens and DNA methyl transferases (DNMTs) paralleled by 5ÂŽmethyl-cytosine (5mC) level decrease. To further investigate miR-29 family role in the fish heart we generated a transgenic zebrafish model where miR-29 was knocked-down. In this model we found significant morphological and functional cardiac alterations and an impairment of oxygen dependent pathways by transcriptome analysis leading to hypoxic marker up-regulation. To get insights the possible hypoxic regulation of miR-29 family, we exposed human cardiac fibroblasts to 1% O <sub>2</sub> levels. In hypoxic condition we found miR-29 down-modulation responsible for the accumulation of collagens and 5mC. Overall, our data suggest that miR-29 family up-regulation might represent an endogenous mechanism aimed at ameliorating the age-dependent cardiac damage leading to hypertrophy and fibrosis

    Inhibition of fatty acid oxidation enables heart regeneration in adult mice

    Get PDF
    Postnatal maturation of cardiomyocytes is characterized by a metabolic switch from glycolysis to fatty acid oxidation, chromatin reconfiguration and exit from the cell cycle, instating a barrier for adult heart regeneration. Here, to explore whether metabolic reprogramming can overcome this barrier and enable heart regeneration, we abrogate fatty acid oxidation in cardiomyocytes by inactivation of Cpt1b. We find that disablement of fatty acid oxidation in cardiomyocytes improves resistance to hypoxia and stimulates cardiomyocyte proliferation, allowing heart regeneration after ischaemia-reperfusion injury. Metabolic studies reveal profound changes in energy metabolism and accumulation of α-ketoglutarate in Cpt1b-mutant cardiomyocytes, leading to activation of the α-ketoglutarate-dependent lysine demethylase KDM5. Activated KDM5 demethylates broad H3K4me3 domains in genes that drive cardiomyocyte maturation, lowering their transcription levels and shifting cardiomyocytes into a less mature state, thereby promoting proliferation. We conclude that metabolic maturation shapes the epigenetic landscape of cardiomyocytes, creating a roadblock for further cell divisions. Reversal of this process allows repair of damaged hearts

    Spurious transcription causing innate immune responses is prevented by 5-hydroxymethylcytosine

    Get PDF
    Generation of functional transcripts requires transcriptional initiation at regular start sites, avoiding production of aberrant and potentially hazardous aberrant RNAs. The mechanisms maintaining transcriptional fidelity and the impact of spurious transcripts on cellular physiology and organ function have not been fully elucidated. Here we show that TET3, which successively oxidizes 5-methylcytosine to 5-hydroxymethylcytosine (5hmC) and other derivatives, prevents aberrant intragenic entry of RNA polymerase II pSer5 into highly expressed genes of airway smooth muscle cells, assuring faithful transcriptional initiation at canonical start sites. Loss of TET3-dependent 5hmC production in SMCs results in accumulation of spurious transcripts, which stimulate the endosomal nucleic-acid-sensing TLR7/8 signaling pathway, thereby provoking massive inflammation and airway remodeling resembling human bronchial asthma. Furthermore, we found that 5hmC levels are substantially lower in human asthma airways compared with control samples. Suppression of spurious transcription might be important to prevent chronic inflammation in asthma

    Genome-Wide Identification of Small RNAs in the Opportunistic Pathogen Enterococcus faecalis V583

    Get PDF
    Small RNA molecules (sRNAs) are key mediators of virulence and stress inducible gene expressions in some pathogens. In this work we identify sRNAs in the Gram positive opportunistic pathogen Enterococcus faecalis. We characterized 11 sRNAs by tiling microarray analysis, 5â€Č and 3â€Č RACE-PCR, and Northern blot analysis. Six sRNAs were specifically expressed at exponential phase, two sRNAs were observed at stationary phase, and three were detected during both phases. Searches of putative functions revealed that three of them (EFA0080_EFA0081 and EFB0062_EFB0063 on pTF1 and pTF2 plasmids, respectively, and EF0408_EF04092 located on the chromosome) are similar to antisense RNA involved in plasmid addiction modules. Moreover, EF1097_EF1098 shares strong homologies with tmRNA (bi-functional RNA acting as both a tRNA and an mRNA) and EF2205_EF2206 appears homologous to 4.5S RNA member of the Signal Recognition Particle (SRP) ribonucleoprotein complex. In addition, proteomic analysis of the ΔEF3314_EF3315 sRNA mutant suggests that it may be involved in the turnover of some abundant proteins. The expression patterns of these transcripts were evaluated by tiling array hybridizations performed with samples from cells grown under eleven different conditions some of which may be encountered during infection. Finally, distribution of these sRNAs among genome sequences of 54 E. faecalis strains was assessed. This is the first experimental genome-wide identification of sRNAs in E. faecalis and provides impetus to the understanding of gene regulation in this important human pathogen

    Transcriptional profiling unveils molecular subgroups of adaptive and maladaptive right ventricular remodeling in pulmonary hypertension

    Get PDF
    Right ventricular (RV) function is critical to prognosis in all forms of pulmonary hypertension. Here we perform molecular phenotyping of RV remodeling by transcriptome analysis of RV tissue obtained from 40 individuals, and two animal models of RV dysfunction of both sexes. Our unsupervised clustering analysis identified ‘early’ and ‘late’ subgroups within compensated and decompensated states, characterized by the expression of distinct signaling pathways, while fatty acid metabolism and estrogen response appeared to underlie sex-specific differences in RV adaptation. The circulating levels of several extracellular matrix proteins deregulated in decompensated RV subgroups were assessed in two independent cohorts of individuals with pulmonary arterial hypertension, revealing that NID1, C1QTNF1 and CRTAC1 predicted the development of a maladaptive RV state, as defined by magnetic resonance imaging parameters, and were associated with worse clinical outcomes. Our study provides a resource for subphenotyping RV states, identifying state-specific biomarkers, and potential therapeutic targets for RV dysfunction
    • 

    corecore