731 research outputs found

    Quantum Monte Carlo Study of High Pressure Solid Molecular Hydrogen

    Get PDF
    We use the diffusion quantum Monte Carlo (DMC) method to calculate the ground state phase diagram of solid molecular hydrogen and examine the stability of the most important insulating phases relative to metallic crystalline molecular hydrogen. We develop a new method to account for finite-size errors by combining the use of twist-averaged boundary conditions with corrections obtained using the Kwee-Zhang-Krakauer (KZK) functional in density functional theory. To study band-gap closure and find the metallization pressure, we perform accurate quasi-particle many-body calculations using the GWGW method. In the static approximation, our DMC simulations indicate a transition from the insulating Cmca-12 structure to the metallic Cmca structure at around 375 GPa. The GWGW band gap of Cmca-12 closes at roughly the same pressure. In the dynamic DMC phase diagram, which includes the effects of zero-point energy, the Cmca-12 structure remains stable up to 430 GPa, well above the pressure at which the GWGW band gap closes. Our results predict that the semimetallic state observed experimentally at around 360 GPa [Phys. Rev. Lett. {\bf 108}, 146402 (2012)] may correspond to the Cmca-12 structure near the pressure at which the band gap closes. The dynamic DMC phase diagram indicates that the hexagonal close packed P63/mP6_3/m structure, which has the largest band gap of the insulating structures considered, is stable up to 220 GPa. This is consistent with recent X-ray data taken at pressures up to 183 GPa [Phys. Rev. B {\bf 82}, 060101(R) (2010)], which also reported a hexagonal close packed arrangement of hydrogen molecules

    Organic lasers: recent developments on materials, device geometries, and fabrication techniques

    Get PDF
    MCG acknowledges financial support through the ERC Starting Grant ABLASE (640012) and the European Union Marie Curie Career Integration Grant (PCIG12-GA-2012-334407). AJCK acknowledges financial support by the German Federal Ministry for Education and Research through a NanoMatFutur research group (BMBF grant no. 13N13522).Organic dyes have been used as gain medium for lasers since the 1960s, long before the advent of today’s organic electronic devices. Organic gain materials are highly attractive for lasing due to their chemical tunability and large stimulated emission cross section. While the traditional dye laser has been largely replaced by solid-state lasers, a number of new and miniaturized organic lasers have emerged that hold great potential for lab-on-chip applications, biointegration, low-cost sensing and related areas, which benefit from the unique properties of organic gain materials. On the fundamental level, these include high exciton binding energy, low refractive index (compared to inorganic semiconductors), and ease of spectral and chemical tuning. On a technological level, mechanical flexibility and compatibility with simple processing techniques such as printing, roll-to-roll, self-assembly, and soft-lithography are most relevant. Here, the authors provide a comprehensive review of the developments in the field over the past decade, discussing recent advances in organic gain materials, which are today often based on solid-state organic semiconductors, as well as optical feedback structures, and device fabrication. Recent efforts toward continuous wave operation and electrical pumping of solid-state organic lasers are reviewed, and new device concepts and emerging applications are summarized.PostprintPeer reviewe

    Single Shot Temporal Action Detection

    Full text link
    Temporal action detection is a very important yet challenging problem, since videos in real applications are usually long, untrimmed and contain multiple action instances. This problem requires not only recognizing action categories but also detecting start time and end time of each action instance. Many state-of-the-art methods adopt the "detection by classification" framework: first do proposal, and then classify proposals. The main drawback of this framework is that the boundaries of action instance proposals have been fixed during the classification step. To address this issue, we propose a novel Single Shot Action Detector (SSAD) network based on 1D temporal convolutional layers to skip the proposal generation step via directly detecting action instances in untrimmed video. On pursuit of designing a particular SSAD network that can work effectively for temporal action detection, we empirically search for the best network architecture of SSAD due to lacking existing models that can be directly adopted. Moreover, we investigate into input feature types and fusion strategies to further improve detection accuracy. We conduct extensive experiments on two challenging datasets: THUMOS 2014 and MEXaction2. When setting Intersection-over-Union threshold to 0.5 during evaluation, SSAD significantly outperforms other state-of-the-art systems by increasing mAP from 19.0% to 24.6% on THUMOS 2014 and from 7.4% to 11.0% on MEXaction2.Comment: ACM Multimedia 201

    3D Nanofabrication inside rapid prototyped microfluidic channels showcased by wet-spinning of single micrometre fibres

    Full text link
    Microfluidics is an established multidisciplinary research domain with widespread applications in the fields of medicine, biotechnology and engineering. Conventional production methods of microfluidic chips have been limited to planar structures, preventing the exploitation of truly three-dimensional architectures for applications such as multi-phase droplet preparation or wet-phase fibre spinning. Here the challenge of nanofabrication inside a microfluidic chip is tackled for the showcase of a spider-inspired spinneret. Multiphoton lithography, an additive manufacturing method, was used to produce free-form microfluidic masters, subsequently replicated by soft lithography. Into the resulting microfluidic device, a threedimensional spider-inspired spinneret was directly fabricated in-chip via multiphoton lithography. Applying this unprecedented fabrication strategy, the to date smallest printed spinneret nozzle is produced. This spinneret resides tightly sealed, connecting it to the macroscopic world. Its functionality is demonstrated by wet-spinning of single-digit micron fibres through a polyacrylonitrile coagulation process induced by a water sheath layer. The methodology developed here demonstrates fabrication strategies to interface complex architectures into classical microfluidic platforms. Using multiphoton lithography for in-chip fabrication adopts a high spatial resolution technology for improving geometry and thus flow control inside microfluidic chips. The showcased fabrication methodology is generic and will be applicable to multiple challenges in fluid control and beyond

    Continuous lasing for perovskites

    Get PDF
    Optically generated local phase changes in methylammonium lead iodide produce a transient quantum well structure with robust optical gain. The result is a perovskite laser that supports continuous-wave lasing under optical pumping.PostprintNon peer reviewe

    Effect of Iodine on Mercury Concentrations in Dental-unit Wastewater

    Get PDF
    Dental amalgam is a mixture of mercury, silver, tin, and copper. Mercury typically makes up about 50% of it. The amalgam is used to provide the dental patient with a strong durable filling. Some of the dental amalgam may end up in the dental wastewater along with the water used for rinsing. Iodine is often used to control bacteria in dental-unit fresh waterlines. Could Iodine effect mercury concentrations in the wastewater?ISTC partnered with researchers at the Naval Institute for Dental and Biomedical Research to answer that question. Full results appear in Stone, Mark E., et al (2006). "Effect of Iodine on Mercury Concentrations in Dental-unit Wastewater." Dental Materials 22(2), 119-124. https://doi.org/10.1016/j.dental.2005.04.009.Ope
    • 

    corecore