40 research outputs found

    The Requirements Editor RED

    Get PDF

    Interstellar neutral helium in the heliosphere from IBEX observations. V. Observations in IBEX-Lo ESA steps 1, 2, & 3

    Get PDF
    Direct-sampling observations of interstellar neutral (ISN) He by Interstellar Boundary Explorer (IBEX) provide valuable insight into the physical state of and processes operating in the interstellar medium ahead of the heliosphere. The ISN He atom signals are observed at the four lowest ESA steps of the IBEX-Lo sensor. The observed signal is a mixture of the primary and secondary components of ISN He and H. Previously, only data from one of the ESA steps have been used. Here, we extended the analysis to data collected in the three lowest ESA steps with the strongest ISN He signal, for the observation seasons 2009-2015. The instrument sensitivity is modeled as a linear function of the atom impact speed onto the sensor's conversion surface separately for each ESA step of the instrument. We found that the sensitivity increases from lower to higher ESA steps, but within each of the ESA steps it is a decreasing function of the atom impact speed. This result may be influenced by the hydrogen contribution, which was not included in the adopted model, but seems to exist in the signal. We conclude that the currently accepted temperature of ISN He and velocity of the Sun through the interstellar medium do not need a revision, and we sketch a plan of further data analysis aiming at investigating ISN H and a better understanding of the population of ISN He originating in the outer heliosheath.Comment: 20 pages, 5 figures, 5 tables, accepted for publication in the The Astrophysical Journa

    The Heliosphere and Local Interstellar Medium from Neutral Atom Observations at Energies Below 10 keV.

    Get PDF
    As the heliosphere moves through the surrounding interstellar medium, a fraction of the interstellar neutral helium, hydrogen, and heavier species crossing the heliopause make it to the inner heliosphere as neutral atoms with energies ranging from few eV to several hundred eV. In addition, energetic neutral hydrogen atoms originating from solar wind protons and from pick-up ions are created through charge-exchange with interstellar atoms. This review summarizes all observations of heliospheric energetic neutral atoms and interstellar neutrals at energies below 10 keV. Most of these data were acquired with the Interstellar Boundary Explorer launched in 2008. Among many other IBEX breakthroughs, it provided the first ever all-sky maps of energetic neutral atoms from the heliosphere and enabled the science community to measure in-situ interstellar neutral hydrogen, oxygen, and neon for the first time. These observations have revolutionized and keep challenging our understanding of the heliosphere shaped by the combined forces of the local interstellar flow, the local interstellar magnetic field, and the time-dependent solar wind

    Local Interstellar Neutral Hydrogen sampled in-situ by IBEX

    Full text link
    Hydrogen gas is the dominant component of the local interstellar medium. However, due to ionization and interaction with the heliosphere, direct sampling of neutral hydrogen in the inner heliosphere is more difficult than sampling the local interstellar neutral helium, which penetrates deep into the heliosphere. In this paper we report on the first detailed analysis of the direct sampling of neutral hydrogen from the local interstellar medium. We confirm that the arrival direction of hydrogen is offset from that of the local Helium component. We further report the discovery of a variation of the penetrating Hydrogen over the first two years of IBEX observations. Observations are consistent with hydrogen experiencing an effective ratio of outward solar radiation pressure to inward gravitational force greater than unity ({\mu}>1); the temporal change observed in the local interstellar hydrogen flux can be explained with solar variability

    The Heliospheric Plasma Sheet Observed in situ by Three Spacecraft over Four Solar Rotations

    Get PDF
    In this paper we present in situ observations of the heliospheric plasma sheet (HPS) from STEREO-A, Wind, and STEREO-B over four solar rotations in the declining phase of Solar Cycle 23, covering late March through late June 2007. During this time period the three spacecraft were located in the ecliptic plane, and were gradually separating in heliographic longitude from about 3 degrees to 14 degrees. Crossings of the HPS were identified using the following criteria: reversal of the interplanetary magnetic field sector, enhanced proton density, and local minima in both the proton specific entropy argument and in the alpha particle-to-proton number density ratio (N a/N p). Two interplanetary coronal mass ejections (ICMEs) were observed during the third solar rotation of our study period, which disrupted the HPS from its quasi-stationary state. We find differences in the in situ proton parameters at the HPS between the three spacecraft despite temporal separations of less than one day. We attribute these differences to both small separations in heliographic latitude and radial evolution of the solar wind leading to the development of compression regions associated with stream interaction regions (SIRs). We also observed a modest enhancement in the density of iron ions at the HPS

    Plasma-neutral gas interactions in various space environments: Assessment beyond simplified approximations as a Voyage 2050 theme

    Get PDF
    In the White Paper, submitted in response to the European Space Agency (ESA) Voyage 2050 Call, we present the importance of advancing our knowledge of plasma-neutral gas interactions, and of deepening our understanding of the partially ionized environments that are ubiquitous in the upper atmospheres of planets and moons, and elsewhere in space. In future space missions, the above task requires addressing the following fundamental questions: (A) How and by how much do plasma-neutral gas interactions influence the re-distribution of externally provided energy to the composing species? (B) How and by how much do plasma-neutral gas interactions contribute toward the growth of heavy complex molecules and biomolecules? Answering these questions is an absolute prerequisite for addressing the long-standing questions of atmospheric escape, the origin of biomolecules, and their role in the evolution of planets, moons, or comets, under the influence of energy sources in the form of electromagnetic and corpuscular radiation, because low-energy ion-neutral cross-sections in space cannot be reproduced quantitatively in laboratories for conditions of satisfying, particularly, (1) low-temperatures, (2) tenuous or strong gradients or layered media, and (3) in low-gravity plasma. Measurements with a minimum core instrument package (< 15 kg) can be used to perform such investigations in many different conditions and should be included in all deep-space missions. These investigations, if specific ranges of background parameters are considered, can also be pursued for Earth, Mars, and Venus

    Particle energization in space plasmas : towards a multi-point, multi-scale plasma observatory

    Get PDF
    This White Paper outlines the importance of addressing the fundamental science theme "How are charged particles energized in space plasmas" through a future ESA mission. The White Paper presents five compelling science questions related to particle energization by shocks, reconnection, waves and turbulence, jets and their combinations. Answering these questions requires resolving scale coupling, nonlinearity, and nonstationarity, which cannot be done with existing multi-point observations. In situ measurements from a multi-point, multi-scale L-class Plasma Observatory consisting of at least seven spacecraft covering fluid, ion, and electron scales are needed. The Plasma Observatory will enable a paradigm shift in our comprehension of particle energization and space plasma physics in general, with a very important impact on solar and astrophysical plasmas. It will be the next logical step following Cluster, THEMIS, and MMS for the very large and active European space plasmas community. Being one of the cornerstone missions of the future ESA Voyage 2050 science programme, it would further strengthen the European scientific and technical leadership in this important field.Peer reviewe
    corecore