2,769 research outputs found
The height dependence of temperature - velocity correlation in the solar photosphere
We derive correlation coefficients between temperature and line-of-sight
velocity as a function of optical depth throughout the solar photosphere for
the non-magnetic photosphere and a small area of enhanced magnetic activity.
The maximum anticorrelation of about -0.6 between temperature and line-of-sight
velocity in the non-magnetic photosphere occurs at log tau5 = -0.4. The
magnetic field is another decorrelating factor along with 5-min oscillations
and seeing.Comment: In press,"Modern Solar Facilities - Advanced Solar Science",
(Gottingen), Universitatsverlag Gottingen, 139-142, 200
Boltzmann theory of engineered anisotropic magnetoresistance in (Ga,Mn)As
We report on a theoretical study of dc transport coefficients in (Ga,Mn)As
diluted magnetic semiconductor ferromagnets that accounts for quasiparticle
scattering from ionized Mn acceptors with a local moment and
from non-magnetic compensating defects. In metallic samples Boltzmann transport
theory with Golden rule scattering rates accounts for the principle trends of
the measured difference between resistances for magnetizations parallel and
perpendicular to the current. We predict that the sign and magnitude of the
anisotropic magnetoresistance can be changed by strain engineering or by
altering chemical composition.Comment: 4 pages, 2 figure
Magnetic loop emergence within a granule
We investigate the temporal evolution of magnetic flux emerging within a
granule in the quiet-Sun internetwork at disk center. We combined IR
spectropolarimetry performed in two Fe I lines at 1565 nm with
speckle-reconstructed G-band imaging. We determined the magnetic field
parameters by a LTE inversion of the full Stokes vector using the SIR code, and
followed their evolution in time. To interpret the observations, we created a
geometrical model of a rising loop in 3D. The relevant parameters of the loop
were matched to the observations where possible. We then synthesized spectra
from the 3D model for a comparison to the observations. We found signatures of
magnetic flux emergence within a growing granule. In the early phases, a
horizontal magnetic field with a distinct linear polarization signal dominated
the emerging flux. Later on, two patches of opposite circular polarization
signal appeared symmetrically on either side of the linear polarization patch,
indicating a small loop-like structure. The mean magnetic flux density of this
loop was roughly 450 G, with a total magnetic flux of around 3x10^17 Mx. During
the ~12 min episode of loop occurrence, the spatial extent of the loop
increased from about 1 to 2 arcsec. The middle part of the appearing feature
was blueshifted during its occurrence, supporting the scenario of an emerging
loop. The temporal evolution of the observed spectra is reproduced to first
order by the spectra derived from the geometrical model. The observed event can
be explained as a case of flux emergence in the shape of a small-scale loop.Comment: 10 pages, 13 figures; accepted for Astronomy and Astrophysics; ps and
eps figures in full resolution are available at
http://www.astro.sk/~koza/figures/aa2009_loop
Open questions on prominences from coordinated observations by IRIS, Hinode, SDO/AIA, THEMIS, and the Meudon/MSDP
Context. A large prominence was observed on September 24, 2013, for three
hours (12:12 UT -15:12 UT) with the newly launched (June 2013) Interface Region
Imaging Spectrograph (IRIS), THEMIS (Tenerife), the Hinode Solar Optical
Telescope (SOT), the Solar Dynamic Observatory Atmospheric Imaging Assembly
(SDO/AIA), and the Multichannel Subtractive Double Pass spectrograph (MSDP) in
the Meudon Solar Tower. Aims. The aim of this work is to study the dynamics of
the prominence fine structures in multiple wavelengths to understand their
formation. Methods. The spectrographs IRIS and MSDP provided line profiles with
a high cadence in Mg II and in Halpha lines. Results. The magnetic field is
found to be globally horizontal with a relatively weak field strength (8-15
Gauss). The Ca II movie reveals turbulent-like motion that is not organized in
specific parts of the prominence. On the other hand, the Mg II line profiles
show multiple peaks well separated in wavelength. Each peak corresponds to a
Gaussian profile, and not to a reversed profile as was expected by the present
non-LTE radiative transfer modeling. Conclusions. Turbulent fields on top of
the macroscopic horizontal component of the magnetic field supporting the
prominence give rise to the complex dynamics of the plasma. The plasma with the
high velocities (70 km/s to 100 km/s if we take into account the transverse
velocities) may correspond to condensation of plasma along more or less
horizontal threads of the arch-shape structure visible in 304 A. The steady
flows (5 km/s) would correspond to a more quiescent plasma (cool and
prominence-corona transition region) of the prominence packed into dips in
horizontal magnetic field lines. The very weak secondary peaks in the Mg II
profiles may reflect the turbulent nature of parts of the prominence.Comment: 15 pages, 14 figure
Untersuchungen zum Einfluß ausgewählter Strukturparameter von Spanplatten auf die Schallemission bei Biegebelastung
Zusammenfassung: An einschichtigen, labortechnisch hergestellten Spanpiatten ausPinus radiata wurde der Einfluß der mittleren Plattenrohdichte und des Festharzanteiles auf die mechanischen Eigenschaften und die Schallemission geprüft. Die Impulssumme steigt mit zunehmendem Belastungsgrad an. Eine Erhöhung von Rohdichte und Festharzanteil bewirken einen Anstieg der freigesetzten Impulse. Zwischen der Impulssumme bei 40% der Bruchlast und dem E-Modul besteht eine straffe Korrelation, die allerdings auch durch die starke Dichte- bzw. Festigkeitsspreizung des Versuchsmaterials mitbedingt is
Epistasis between 5-HTTLPR and ADRA2B polymorphisms influences attentional bias for emotional information in healthy volunteers
Individual differences in emotional processing are likely to contribute to vulnerability and resilience to emotional disorders such as depression and anxiety. Genetic variation is known to contribute to these differences but they remain incompletely understood. The serotonin transporter (5-HTTLPR) and alpha(2B)-adrenergic autoreceptor (ADRA2B) insertion/deletion polymorphisms impact on two separate but interacting monaminergic signalling mechanisms that have been implicated in both emotional processing and emotional disorders. Recent studies suggest that the 5-HTTLPR s allele is associated with a negative attentional bias and an increased risk of emotional disorders. However, such complex behavioural traits are likely to exhibit polygenicity, including epistasis. This study examined the contribution of the 5-HTTLPR and ADRA2B insertion/deletion polymorphisms to attentional biases for aversive information in 94 healthy male volunteers and found evidence of a significant epistatic effect (p < 0.001). Specifically, in the presence of the 5-HTTLPR s allele, the attentional bias for aversive information was attenuated by possession of the ADRA2B deletion variant whereas in the absence of the s allele, the bias was enhanced. These data identify a cognitive mechanism linking genotype-dependent serotonergic and noradrenergic signalling that is likely to have implications for the development of cognitive markers for depression/anxiety as well as therapeutic drug effects and personalized approaches to treatment
Universal relation between longitudinal and transverse conductivities in quantum Hall effect
We show that any critical transition region between two adjacent Hall
plateaus in either integer or fractional quantum Hall effect is characterized
by a universal semi-circle relationship between the longitudinal and transverse
conductivities, provided the sample is homogeneous and isotropic on a large
scale. This conclusion is demonstrated both for the phase-coherent quantum
transport as well as for the incoherent transport.Comment: REVTEX 3.0, 1 figure, 4 pages. SISSA-08179
Deviations from plastic barriers in BiSrCaCuO thin films
Resistive transitions of an epitaxial BiSrCaCuO thin
film were measured in various magnetic fields (), ranging from 0
to 22.0 T. Rounded curvatures of low resistivity tails are observed in
Arrhenius plot and considered to relate to deviations from plastic barriers. In
order to characterize these deviations, an empirical barrier form is developed,
which is found to be in good agreement with experimental data and coincide with
the plastic barrier form in a limited magnetic field range. Using the plastic
barrier predictions and the empirical barrier form, we successfully explain the
observed deviations.Comment: 5 pages, 6 figures; PRB 71, 052502 (2005
Ion-Neutral Coupling in Solar Prominence
Coupling between ions and neutrals in magnetized plasmas is fundamentally important to many aspects of heliophysics, including our ionosphere, the solar chromosphere, the solar wind interaction with planetary atmospheres, and the interface between the heliosphere and the interstellar medium. Ion-neutral coupling also plays a major role in the physics of solar prominences. By combining theory, modeling, and observations we are working toward a better understanding of the structure and dynamics of partially ionized prominence plasma. Two key questions are addressed in the present work: 1) what physical mechanism(s) sets the cross-field scale of prominence threads? 2) Are ion-neutral interactions responsible for the vertical flows and structure in prominences? We present initial results from a study investigating what role ion-neutral interactions play in prominence dynamics and structure. This research was supported by NASA
- …