2,080 research outputs found

    Voltage control of magnetocrystalline anisotropy in ferromagnetic - semiconductor/piezoelectric hybrid structures

    Full text link
    We demonstrate dynamic voltage control of the magnetic anisotropy of a (Ga,Mn)As device bonded to a piezoelectric transducer. The application of a uniaxial strain leads to a large reorientation of the magnetic easy axis which is detected by measuring longitudinal and transverse anisotropic magnetoresistance coefficients. Calculations based on the mean-field kinetic-exchange model of (Ga,Mn)As provide microscopic understanding of the measured effect. Electrically induced magnetization switching and detection of unconventional crystalline components of the anisotropic magnetoresistance are presented, illustrating the generic utility of the piezo voltage control to provide new device functionalities and in the research of micromagnetic and magnetotransport phenomena in diluted magnetic semiconductors.Comment: Submitted to Physical Review Letters. Updates version 1 to include a more detailed discussion of the effect of strain on the anisotropic magnetoresistanc

    Statistical properties of the low-temperature conductance peak-heights for Corbino discs in the quantum Hall regime

    Full text link
    A recent theory has provided a possible explanation for the ``non-universal scaling'' of the low-temperature conductance (and conductivity) peak-heights of two-dimensional electron systems in the integer and fractional quantum Hall regimes. This explanation is based on the hypothesis that samples which show this behavior contain density inhomogeneities. Theory then relates the non-universal conductance peak-heights to the ``number of alternating percolation clusters'' of a continuum percolation model defined on the spatially-varying local carrier density. We discuss the statistical properties of the number of alternating percolation clusters for Corbino disc samples characterized by random density fluctuations which have a correlation length small compared to the sample size. This allows a determination of the statistical properties of the low-temperature conductance peak-heights of such samples. We focus on a range of filling fraction at the center of the plateau transition for which the percolation model may be considered to be critical. We appeal to conformal invariance of critical percolation and argue that the properties of interest are directly related to the corresponding quantities calculated numerically for bond-percolation on a cylinder. Our results allow a lower bound to be placed on the non-universal conductance peak-heights, and we compare these results with recent experimental measurements.Comment: 7 pages, 4 postscript figures included. Revtex with epsf.tex and multicol.sty. The revised version contains some additional discussion of the theory and slightly improved numerical result

    Charge Density Wave in Two-Dimensional Electron Liquid in Weak Magnetic Field

    Full text link
    We study the ground state of a clean two-dimensional electron liquid in a weak magnetic field where N1N \gg 1 lower Landau levels are completely filled and the upper level is partially filled. It is shown that the electrons at the upper Landau level form domains with filling factor equal to one and zero. The domains alternate with a spatial period of order of the cyclotron radius, which is much larger than the interparticle distance at the upper Landau level. The one-particle density of states, which can be probed by tunneling experiments, is shown to have a pseudogap linearly dependent on the magnetic field in the limit of large NN.Comment: Several errors correcte

    Absence of Scaling in the Integer Quantum Hall Effect

    Full text link
    We have studied the conductivity peak in the transition region between the two lowest integer Quantum Hall states using transmission measurements of edge magnetoplasmons. The width of the transition region is found to increase linearly with frequency but remains finite when extrapolated to zero frequency and temperature. Contrary to prevalent theoretical pictures, our data does not show the scaling characteristics of critical phenomena.These results suggest that a different mechanism governs the transition in our experiment.Comment: Minor changes and new references include

    Evaluating Knowledge Anchors in Data Graphs against Basic Level Objects

    Get PDF
    The growing number of available data graphs in the form of RDF Linked Da-ta enables the development of semantic exploration applications in many domains. Often, the users are not domain experts and are therefore unaware of the complex knowledge structures represented in the data graphs they in-teract with. This hinders users’ experience and effectiveness. Our research concerns intelligent support to facilitate the exploration of data graphs by us-ers who are not domain experts. We propose a new navigation support ap-proach underpinned by the subsumption theory of meaningful learning, which postulates that new concepts are grasped by starting from familiar concepts which serve as knowledge anchors from where links to new knowledge are made. Our earlier work has developed several metrics and the corresponding algorithms for identifying knowledge anchors in data graphs. In this paper, we assess the performance of these algorithms by considering the user perspective and application context. The paper address the challenge of aligning basic level objects that represent familiar concepts in human cog-nitive structures with automatically derived knowledge anchors in data graphs. We present a systematic approach that adapts experimental methods from Cognitive Science to derive basic level objects underpinned by a data graph. This is used to evaluate knowledge anchors in data graphs in two ap-plication domains - semantic browsing (Music) and semantic search (Ca-reers). The evaluation validates the algorithms, which enables their adoption over different domains and application contexts

    Collapse of Spin-Splitting in the Quantum Hall Effect

    Full text link
    It is known experimentally that at not very large filling factors ν\nu the quantum Hall conductivity peaks corresponding to the same Landau level number NN and two different spin orientations are well separated. These peaks occur at half-integer filling factors ν=2N+1/2\nu = 2 N + 1/2 and ν=2N+3/2\nu = 2 N + 3/2 so that the distance between them δν\delta\nu is unity. As ν\nu increases δν\delta\nu shrinks. Near certain N=NcN = N_c two peaks abruptly merge into a single peak at ν=2N+1\nu = 2N + 1. We argue that this collapse of the spin-splitting at low magnetic fields is attributed to the disorder-induced destruction of the exchange enhancement of the electron gg-factor. We use the mean-field approach to show that in the limit of zero Zeeman energy δν\delta\nu experiences a second-order phase transition as a function of the magnetic field. We give explicit expressions for NcN_c in terms of a sample's parameters. For example, we predict that for high-mobility heterostructures Nc=0.9dn5/6ni1/3,N_c = 0.9 d n^{5/6} n_i^{-1/3}, where dd is the spacer width, nn is the density of the two-dimensional electron gas, and nin_i is the two-dimensional density of randomly situated remote donors.Comment: 14 pages, compressed Postscript fil

    Analysis and interpretation of a fast limb CME with eruptive prominence, C-flare and EUV dimming

    Full text link
    Coronal Mass ejections or CMEs are large dynamical solar-corona events. The mass balance and kinematics of a fast limb CME, including its prominence progenitor and the associated flare, will be compared with computed magnetic structures to look for their origin and effect. Multi-wavelength ground-based and space-borne observations are used to study a fast W-limb CME event of December 2, 2003, taking into account both on and off disk observations. Its erupting prominence is measured at high cadence with the Pic du Midi full H-alpha line-flux imaging coronagraph. EUV images from space instruments are processed including difference imaging. SOHO/LASCO images are used to study the mass excess and motions. A fast bright expanding coronal loop is identified in the region recorded slightly later by GOES as a C7.2 flare, followed by a brightening and an acceleration phase of the erupting material with both cool and hot components. The total coronal radiative flux dropped by 5 percent in the EUV channels, revealing a large dimming effect at and above the limb. The typical 3-part structure observed 1 hour later shows a core shaped similarly to the eruptive filament/prominence. The total measured mass of the escaping CME (1.5x10to16 g from C2 LASCO observations) definitely exceeds the estimated mass of the escaping cool prominence material although assumptions made to analyse the Ha erupting prominence, as well as the corresponding EUV darkening of the filament observed several days before, made this evaluation uncertain by a factor of 2. From the current free extrapolation we discuss the shape of the magnetic neutral surface and a possible scenario leading to an instability, including the small scale dynamics inside and around the filament.Comment: 11 pages, 9 figure

    Mesoscopic conductance and its fluctuations at non-zero Hall angle

    Full text link
    We consider the bilocal conductivity tensor, the two-probe conductance and its fluctuations for a disordered phase-coherent two-dimensional system of non-interacting electrons in the presence of a magnetic field, including correctly the edge effects. Analytical results are obtained by perturbation theory in the limit σxx1\sigma_{xx} \gg 1. For mesoscopic systems the conduction process is dominated by diffusion but we show that, due to the lack of time-reversal symmetry, the boundary condition for diffusion is altered at the reflecting edges. Instead of the usual condition, that the derivative along the direction normal to the wall of the diffusing variable vanishes, the derivative at the Hall angle to the normal vanishes. We demonstrate the origin of this boundary condition from different starting points, using (i) a simplified Chalker-Coddington network model, (ii) the standard diagrammatic perturbation expansion, and (iii) the nonlinear sigma-model with the topological term, thus establishing connections between the different approaches. Further boundary effects are found in quantum interference phenomena. We evaluate the mean bilocal conductivity tensor σμν(r,r)\sigma_{\mu\nu}(r,r'), and the mean and variance of the conductance, to leading order in 1/σxx1/\sigma_{xx} and to order (σxy/σxx)2(\sigma_{xy}/\sigma_{xx})^2, and find that the variance of the conductance increases with the Hall ratio. Thus the conductance fluctuations are no longer simply described by the unitary universality class of the σxy=0\sigma_{xy}=0 case, but instead there is a one-parameter family of probability distributions. In the quasi-one-dimensional limit, the usual universal result for the conductance fluctuations of the unitary ensemble is recovered, in contrast to results of previous authors. Also, a long discussion of current conservation.Comment: Latex, uses RevTex, 58 pages, 5 figures available on request at [email protected]. Submitted to Phys. Rev.

    Physics of Solar Prominences: I - Spectral Diagnostics and Non-LTE Modelling

    Full text link
    This review paper outlines background information and covers recent advances made via the analysis of spectra and images of prominence plasma and the increased sophistication of non-LTE (ie when there is a departure from Local Thermodynamic Equilibrium) radiative transfer models. We first describe the spectral inversion techniques that have been used to infer the plasma parameters important for the general properties of the prominence plasma in both its cool core and the hotter prominence-corona transition region. We also review studies devoted to the observation of bulk motions of the prominence plasma and to the determination of prominence mass. However, a simple inversion of spectroscopic data usually fails when the lines become optically thick at certain wavelengths. Therefore, complex non-LTE models become necessary. We thus present the basics of non-LTE radiative transfer theory and the associated multi-level radiative transfer problems. The main results of one- and two-dimensional models of the prominences and their fine-structures are presented. We then discuss the energy balance in various prominence models. Finally, we outline the outstanding observational and theoretical questions, and the directions for future progress in our understanding of solar prominences.Comment: 96 pages, 37 figures, Space Science Reviews. Some figures may have a better resolution in the published version. New version reflects minor changes brought after proof editin
    corecore