216 research outputs found

    Method accurately measures mean particle diameters of monodisperse polystyrene latexes

    Get PDF
    Photomicrographic method determines mean particle diameters of monodisperse polystyrene latexes. Many diameters are measured simultaneously by measuring row lengths of particles in a triangular array at a glass-oil interface. The method provides size standards for electronic particle counters and prevents distortions, softening, and flattening

    Internal and ancestral controls of cell-generation times

    Get PDF
    Lateral and longitudinal correlations between related cells reveal associations between the generation times of cells for an intermediate period /three generations in bacteral cultures/. Generation times of progeny are influenced by nongenetic factors transmitted from their ancestors

    Confinement of knotted polymers in a slit

    Full text link
    We investigate the effect of knot type on the properties of a ring polymer confined to a slit. For relatively wide slits, the more complex the knot, the more the force exerted by the polymer on the walls is decreased compared to an unknotted polymer of the same length. For more narrow slits the opposite is true. The crossover between these two regimes is, to first order, at smaller slit width for more complex knots. However, knot topology can affect these trends in subtle ways. Besides the force exerted by the polymers, we also study other quantities such as the monomer-density distribution across the slit and the anisotropic radius of gyration.Comment: 9 pages, 6 figures, submitted for publicatio

    Condition-Dependent Cell Volume and Concentration of Escherichia coli to Facilitate Data Conversion for Systems Biology Modeling

    Get PDF
    Systems biology modeling typically requires quantitative experimental data such as intracellular concentrations or copy numbers per cell. In order to convert population-averaging omics measurement data to intracellular concentrations or cellular copy numbers, the total cell volume and number of cells in a sample need to be known. Unfortunately, even for the often studied model bacterium Escherichia coli this information is hardly available and furthermore, certain measures (e.g. cell volume) are also dependent on the growth condition. In this work, we have determined these basic data for E. coli cells when grown in 22 different conditions so that respective data conversions can be done correctly. First, we determine growth-rate dependent cell volumes. Second, we show that in a 1 ml E. coli sample at an optical density (600 nm) of 1 the total cell volume is around 3.6 µl for all conditions tested. Third, we demonstrate that the cell number in a sample can be determined on the basis of the sample's optical density and the cells' growth rate. The data presented will allow for conversion of E. coli measurement data normalized to optical density into volumetric cellular concentrations and copy numbers per cell - two important parameters for systems biology model development

    A Feedback Quenched Oscillator Produces Turing Patterning with One Diffuser

    Get PDF
    Efforts to engineer synthetic gene networks that spontaneously produce patterning in multicellular ensembles have focused on Turing's original model and the “activator-inhibitor” models of Meinhardt and Gierer. Systems based on this model are notoriously difficult to engineer. We present the first demonstration that Turing pattern formation can arise in a new family of oscillator-driven gene network topologies, specifically when a second feedback loop is introduced which quenches oscillations and incorporates a diffusible molecule. We provide an analysis of the system that predicts the range of kinetic parameters over which patterning should emerge and demonstrate the system's viability using stochastic simulations of a field of cells using realistic parameters. The primary goal of this paper is to provide a circuit architecture which can be implemented with relative ease by practitioners and which could serve as a model system for pattern generation in synthetic multicellular systems. Given the wide range of oscillatory circuits in natural systems, our system supports the tantalizing possibility that Turing pattern formation in natural multicellular systems can arise from oscillator-driven mechanisms

    Intracellular Water Exchange for Measuring the Dry Mass, Water Mass and Changes in Chemical Composition of Living Cells

    Get PDF
    We present a method for direct non-optical quantification of dry mass, dry density and water mass of single living cells in suspension. Dry mass and dry density are obtained simultaneously by measuring a cell’s buoyant mass sequentially in an H[subscript 2]O-based fluid and a D[subscript 2]O-based fluid. Rapid exchange of intracellular H[subscript 2]O for D[subscript 2]O renders the cell’s water content neutrally buoyant in both measurements, and thus the paired measurements yield the mass and density of the cell’s dry material alone. Utilizing this same property of rapid water exchange, we also demonstrate the quantification of intracellular water mass. In a population of E. coli, we paired these measurements to estimate the percent dry weight by mass and volume. We then focused on cellular dry density – the average density of all cellular biomolecules, weighted by their relative abundances. Given that densities vary across biomolecule types (RNA, DNA, protein), we investigated whether we could detect changes in biomolecular composition in bacteria, fungi, and mammalian cells. In E. coli, and S. cerevisiae, dry density increases from stationary to exponential phase, consistent with previously known increases in the RNA/protein ratio from up-regulated ribosome production. For mammalian cells, changes in growth conditions cause substantial shifts in dry density, suggesting concurrent changes in the protein, nucleic acid and lipid content of the cell.National Cancer Institute (U.S.). Physical Sciences-Oncology Center (U54CA143874)National Institutes of Health (U.S.) (Center for Cell Division Process Grant P50GM6876)National Institutes of Health (U.S.) (Contract R01CA170592)United States. Army Research Office (Institute for Collaborate Biotechnologies Contract W911NF-09-D-0001

    Model Convolution: A Computational Approach to Digital Image Interpretation

    Get PDF
    Digital fluorescence microscopy is commonly used to track individual proteins and their dynamics in living cells. However, extracting molecule-specific information from fluorescence images is often limited by the noise and blur intrinsic to the cell and the imaging system. Here we discuss a method called “model-convolution,” which uses experimentally measured noise and blur to simulate the process of imaging fluorescent proteins whose spatial distribution cannot be resolved. We then compare model-convolution to the more standard approach of experimental deconvolution. In some circumstances, standard experimental deconvolution approaches fail to yield the correct underlying fluorophore distribution. In these situations, model-convolution removes the uncertainty associated with deconvolution and therefore allows direct statistical comparison of experimental and theoretical data. Thus, if there are structural constraints on molecular organization, the model-convolution method better utilizes information gathered via fluorescence microscopy, and naturally integrates experiment and theory

    The dynamic geophysical environment of (101955) Bennu based on OSIRIS-REx measurements

    Get PDF
    The top-shaped morphology characteristic of asteroid (101955) Bennu, often found among fast-spinning asteroids and binary asteroid primaries, may have contributed substantially to binary asteroid formation. Yet a detailed geophysical analysis of this morphology for a fast-spinning asteroid has not been possible prior to the Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer (OSIRIS-REx) mission. Combining the measured Bennu mass and shape obtained during the Preliminary Survey phase of the OSIRIS-REx mission, we find a notable transition in Bennu’s surface slopes within its rotational Roche lobe, defined as the region where material is energetically trapped to the surface. As the intersection of the rotational Roche lobe with Bennu’s surface has been most recently migrating towards its equator (given Bennu’s increasing spin rate), we infer that Bennu’s surface slopes have been changing across its surface within the last million years. We also find evidence for substantial density heterogeneity within this body, suggesting that its interior is a mixture of voids and boulders. The presence of such heterogeneity and Bennu’s top shape are consistent with spin-induced failure at some point in its past, although the manner of its failure cannot yet be determined. Future measurements by the OSIRIS-REx spacecraft will provide insight into and may resolve questions regarding the formation and evolution of Bennu’s top-shape morphology and its link to the formation of binary asteroids
    corecore