62 research outputs found

    Inflammation, insulin resistance, and diabetes-mendelian randomization using CRP haplotypes points upstream

    Get PDF
    Background Raised C-reactive protein (CRP) is a risk factor for type 2 diabetes. According to the Mendelian randomization method, the association is likely to be causal if genetic variants that affect CRP level are associated with markers of diabetes development and diabetes. Our objective was to examine the nature of the association between CRP phenotype and diabetes development using CRP haplotypes as instrumental variables. Methods and Findings We genotyped three tagging SNPs (CRP + 2302G > A; CRP + 1444T > C; CRP + 4899T > G) in the CRP gene and measured serum CRP in 5,274 men and women at mean ages 49 and 61 y (Whitehall II Study). Homeostasis model assessment-insulin resistance (HOMA-IR) and hemoglobin A1c (HbA1c) were measured at age 61 y. Diabetes was ascertained by glucose tolerance test and self-report. Common major haplotypes were strongly associated with serum CRP levels, but unrelated to obesity, blood pressure, and socioeconomic position, which may confound the association between CRP and diabetes risk. Serum CRP was associated with these potential confounding factors. After adjustment for age and sex, baseline serum CRP was associated with incident diabetes (hazard ratio = 1.39 [95% confidence interval 1.29-1.51], HOMA-IR, and HbA1c, but the associations were considerably attenuated on adjustment for potential confounding factors. In contrast, CRP haplotypes were not associated with HOMA-IR or HbA1c (p=0.52-0.92). The associations of CRP with HOMA-IR and HbA1c were all null when examined using instrumental variables analysis, with genetic variants as the instrument for serum CRP. Instrumental variables estimates differed from the directly observed associations (p=0.007-0.11). Pooled analysis of CRP haplotypes and diabetes in Whitehall II and Northwick Park Heart Study II produced null findings (p=0.25-0.88). Analyses based on the Wellcome Trust Case Control Consortium (1,923 diabetes cases, 2,932 controls) using three SNPs in tight linkage disequilibrium with our tagging SNPs also demonstrated null associations. Conclusions Observed associations between serum CRP and insulin resistance, glycemia, and diabetes are likely to be noncausal. Inflammation may play a causal role via upstream effectors rather than the downstream marker CRP

    Effects of interacting networks of cardiovascular risk genes on the risk of type 2 diabetes mellitus (the CODAM study)

    Get PDF
    Background: Genetic dissection of complex diseases requires innovative approaches for identification of disease-predisposing genes. A well-known example of a human complex disease with a strong genetic component is Type 2 Diabetes Mellitus (T2DM). Methods: We genotyped normal-glucose-tolerant subjects (NGT; n = 54), subjects with an impaired glucose metabolism (IGM; n = 111) and T2DM (n = 142) subjects, in an assay (designed by Roche Molecular Systems) for detection of 68 polymorphisms in 36 cardiovascular risk genes. Using the single-locus logistic regression and the so-called haplotype entropy, we explored the possibility that (1) common pathways underlie development of T2DM and cardiovascular disease which would imply enrichment of cardiovascular risk polymorphisms in "pre-diabetic" (IGM) and diabetic (T2DM) populations- and (2) that gene-gene interactions are relevant for the effects of risk polymorphisms. Results: In single-locus analyses, we showed suggestive association with disturbed glucose metabolism (i.e. subjects who were either IGM or had T2DM), or with T2DM only. Moreover, in the haplotype entropy analysis, we identified a total of 14 pairs of polymorphisms (with a false discovery rate of 0.125) that may confer risk of disturbed glucose metabolism, or T2DM only, as members of interacting networks of genes. We substantiated gene-gene interactions by showing that these interacting networks can indeed identify potential "disease-predisposing allele-combinations". Conclusion: Gene-gene interactions of cardiovascular risk polymorphisms can be detected in prediabetes and T2DM, supporting the hypothesis that common pathways may underlie development of T2DM and cardiovascular disease. Thus, a specific set of risk polymorphisms, when simultaneously present, increases the risk of disease and hence is indeed relevant in the transfer of risk

    The genetic susceptibility to type 2 diabetes may be modulated by obesity status: implications for association studies

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Considering that a portion of the heterogeneity amongst previous replication studies may be due to a variable proportion of obese subjects in case-control designs, we assessed the association of genetic variants with type 2 diabetes (T2D) in large groups of obese and non-obese subjects.</p> <p>Methods</p> <p>We genotyped <it>RETN</it>, <it>KCNJ11</it>, <it>HNF4A</it>, <it>HNF1A</it>, <it>GCK</it>, <it>SLC30A8</it>, <it>ENPP1</it>, <it>ADIPOQ</it>, <it>PPARG</it>, and <it>TCF7L2 </it>polymorphisms in 1,283 normoglycemic (NG) and 1,581 T2D obese individuals as well as in 3,189 NG and 1,244 T2D non-obese subjects of European descent, allowing us to examine T2D risk over a wide range of BMI.</p> <p>Results</p> <p>Amongst non-obese individuals, we observed significant T2D associations with <it>HNF1A </it>I27L [odds ratio (OR) = 1.14, <it>P </it>= 0.04], <it>GCK </it>-30G>A (OR = 1.23, <it>P </it>= 0.01), <it>SLC30A8 </it>R325W (OR = 0.87, <it>P </it>= 0.04), and <it>TCF7L2 </it>rs7903146 (OR = 1.89, <it>P </it>= 4.5 × 10<sup>-23</sup>), and non-significant associations with <it>PPARG </it>Pro12Ala (OR = 0.85, <it>P </it>= 0.14), <it>ADIPOQ </it>-11,377C>G (OR = 1.00, <it>P </it>= 0.97) and <it>ENPP1 </it>K121Q (OR = 0.99, <it>P </it>= 0.94). In obese subjects, associations with T2D were detected with <it>PPARG </it>Pro12Ala (OR = 0.73, <it>P </it>= 0.004), <it>ADIPOQ </it>-11,377C>G (OR = 1.26, <it>P </it>= 0.02), <it>ENPP1 </it>K121Q (OR = 1.30, <it>P </it>= 0.003) and <it>TCF7L2 </it>rs7903146 (OR = 1.30, <it>P </it>= 1.1 × 10<sup>-4</sup>), and non-significant associations with <it>HNF1A </it>I27L (OR = 0.96, <it>P </it>= 0.53), <it>GCK </it>-30G>A (OR = 1.15, <it>P </it>= 0.12) and <it>SLC30A8 </it>R325W (OR = 0.95, <it>P </it>= 0.44). However, a genotypic heterogeneity was only found for <it>TCF7L2 </it>rs7903146 (<it>P </it>= 3.2 × 10<sup>-5</sup>) and <it>ENPP1 </it>K121Q (<it>P </it>= 0.02). No association with T2D was found for <it>KCNJ11</it>, <it>RETN</it>, and <it>HNF4A </it>polymorphisms in non-obese or in obese individuals.</p> <p>Conclusion</p> <p>Genetic variants modulating insulin action may have an increased effect on T2D susceptibility in the presence of obesity, whereas genetic variants acting on insulin secretion may have a greater impact on T2D susceptibility in non-obese individuals.</p

    The impact of interleukin-6 promoter (−597/−572/−174)genotype on interleukin-6 production after lipopolysaccharide stimulation

    No full text
    Interleukin (IL)-6 is a pleiotropic cytokine, produced by different cells. There is accumulating evidence that IL-6 promoter polymorphisms impact substantially on various diseases and we identified kidney transplant recipients carrying the IL-6 GGG/GGG (−597/−572/−174)genotype to have superior graft survival. To prove a functional impact on gene expression, we analysed systematically IL-6 production in healthy individuals with respect to the IL-6 (−597/−572/−174)genotype. IL-6 was determined in 100 healthy blood donors at protein and mRNA levels upon specific stimulation in monocytes and T lymphocytes under whole blood conditions. GGG/GGG individuals showed a lower IL-6 secretion upon lipopolysaccharide (LPS)-stimulation versus all others (P = 0·039). This link was even stronger when (−597) and (−174)GG genotypes were reanalysed separately (P = 0·008, P = 0·017). However, we found neither a difference at the mRNA level or percentage of CD14(+) cells nor after T cell stimulation. We found evidence for the IL-6 (−597/−572/−174)genotype to affect IL-6 synthesis, i.e. lower levels of IL-6 protein upon LPS-stimulation in GGG/GGG individuals. Further studies are needed in kidney transplant recipients to investigate the potential link between the GGG/GGG genotype and graft survival. In line with this, determination of the genetic risk profiles might be promising to improve the transplant outcome in the individual patient

    Alzheimer's disease and type 2 diabetes: the association study of polymorphisms in tumor necrosis factor-alpha and apolipoprotein E genes

    Get PDF
    Type 2 diabetes (T2D) and Alzheimer's disease (AD) are two progressive disorders with high prevalence worldwide. Polymorphisms in tumor necrosis factor-alpha (TNF-?) and apolipoprotein E (ApoE) genes might be associated with both T2D and AD, representing possible genetic markers for the development of the AD in subjects with T2D. The aim was to determine ApoE and G-308A TNF-? gene polymorphisms in unrelated Croatian Caucasians: 207 patients with sporadic AD, 196 T2D patients and 456 healthy controls. Patients with AD had higher frequency of ApoE4 allele compared to T2D patients and controls. The significant association, observed between ApoE2 allele and T2D, disappeared after the data were adjusted for age and sex. The genotype or allele frequencies of G-308A TNF-? gene polymorphism were similar among the patients with AD, T2D and healthy controls. In conclusion, these results do not support the hypothesis that the A allele of G-308A TNF-? gene polymorphism is associated either with AD or T2D. Our data confirm the association between the ApoE4 allele and AD, and point out the E2 allele of ApoE gene as the possible risk factor for T2D
    corecore