188 research outputs found

    Comparative analysis of genetic polymorphism in <i>Rhaponticum carthamoides</i> (Asteraceae) populations by ISSR markers in the Altai Republic

    Get PDF
    Background. Rhaponticum carthamoides (Willd.) Iljin (Asteraceae) is a rare species for the Altai Republic (AR).  The purpose of this study was to characterize the genetic polymorphism of Rhaponticum carthamoides at the inter- and intrapopulation level in a comparative analysis for subsequent selection of seed samples from the genetically most heterogeneous natural populations of the AR for practical purposes.   Materials and methods. The species was studied for ISSR variability in five habitats in the AR. DNA from dried leaves of R. carthamoides was isolated using the STAB method. For testing seventeen ISSR primers were used, seven of which were selected as most informative ones.   Results and conclusion. The analysis showed that individual plants from five cenopopulations (CP) were distributed into three groups of similarity on the dendrogram. A separate clade was formed by plant samples from two CPs of the Katun Nature Reserve (KNR). Samples of one of those CPs grew on well-warmed southern slopes and exhibited a higher genetic heterogeneity than the others. The highest intrapopulation and interpopulation similarity in the distribution of DNA fragments was also found in two CPs from habitats with the smallest geographic distance from each other. Representatives of a separate population, least in size and number of individuals in the KNR, showed a high level of similarity in the distribution of DNA fragments. Significantly lower coefficients of genetic similarity with other CPs were found in plants from a small isolated CP from the Shavlinsky Protected Area. It can be assumed that one of the main reasons for the least genetic similarity of this population with others is its location in the immediate vicinity of the foothill at the pass to Achik (Ongudaysky District; absolute height: 2300 masl). This location can be a limiting factor for the exchange of genetic information with individuals from other populations

    The formation and the study of a collection of the Miscanthus resource species gene pool in the conditions of the West Siberian forest steppe

    Get PDF
    Several species of the genus Miscanthus Anderss. (elephant grass) characterized by a high rate of growth of the aboveground vegetative mass are currently in the focus of attention due to their high practical application as a source of bioethanol and cellulose. The main goals of this study were: (1) molecular genetic identification and (2) histochemical analysis of the genus Miscanthus Anderss. species in the collection of Central Siberian Botanical Garden SB RAS in order to identify the most perspective and technically valuable individuals. To study the collection of Miscanthus samples, a multi-disciplinary approach was applied. To collect the samples of different species from native habitats, traditional systematic and geobotanical methods (comparative morphological and phytocenological) were used. According to the results of the ISSR-analysis, 16 samples of three Miscanthus species were divided into two clades: Sinensis and Sacchariflorus, the former including two subclades. For the samples of M. purpurascens_I and II, a hybrid origin of this species was confirmed by ISSR data. The molecular data obtained from the study allowed us to hypothesize that the samples involved in the subclade I of the Sinensis clade could be used as donors of resistance to adverse environments, and the samples of the subclade II, as donors of high biomass productivity. Based on histochemical analysis, sclerenchyma cells were characterized by the most lignin-rich thickened membranes, so the most appropriate direction in Miscanthus selection should be based on identification and using less lignin-containing samples

    Homozygosity for a missense mutation in the 67 kDa isoform of glutamate decarboxylase in a family with autosomal recessive spastic cerebral palsy: parallels with Stiff-Person Syndrome and other movement disorders

    Get PDF
    Background Cerebral palsy (CP) is an heterogeneous group of neurological disorders of movement and/or posture, with an estimated incidence of 1 in 1000 live births. Non-progressive forms of symmetrical, spastic CP have been identified, which show a Mendelian autosomal recessive pattern of inheritance. We recently described the mapping of a recessive spastic CP locus to a 5 cM chromosomal region located at 2q24-31.1, in rare consanguineous families. Methods Here we present data that refine this locus to a 0.5 cM region, flanked by the microsatellite markers D2S2345 and D2S326. The minimal region contains the candidate gene GAD1, which encodes a glutamate decarboxylase isoform (GAD67), involved in conversion of the amino acid and excitatory neurotransmitter glutamate to the inhibitory neurotransmitter γ-aminobutyric acid (GABA). Results A novel amino acid mis-sense mutation in GAD67 was detected, which segregated with CP in affected individuals. Conclusions This result is interesting because auto-antibodies to GAD67 and the more widely studied GAD65 homologue encoded by the GAD2 gene, are described in patients with Stiff-Person Syndrome (SPS), epilepsy, cerebellar ataxia and Batten disease. Further investigation seems merited of the possibility that variation in the GAD1 sequence, potentially affecting glutamate/GABA ratios, may underlie this form of spastic CP, given the presence of anti-GAD antibodies in SPS and the recognised excitotoxicity of glutamate in various contexts

    Stereotactic body radiotherapy for organ-confined prostate cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Improved understanding of prostate cancer radiobiology combined with advances in delivery of radiation to the moving prostate offer the potential to reduce treatment-related morbidity and maintain quality of life (QOL) following prostate cancer treatment. We present preliminary results following stereotactic body radiotherapy (SBRT) treatment for organ-confined prostate cancer.</p> <p>Methods</p> <p>SBRT was performed on 304 patients with clinically localized prostate cancer: 50 received 5 fractions of 7 Gy (total dose 35 Gy) and 254 received 5 fractions of 7.25 Gy (total dose 36.25 Gy). Acute and late toxicity was assessed using the Radiation Therapy Oncology Group scale. The Expanded Prostate Cancer Index Composite questionnaire was used to assess QOL. Prostate-specific antigen response was monitored.</p> <p>Results</p> <p>At a median 30-month (26 - 37 month, range) follow-up there were no biochemical failures for the 35-Gy dose level. Acute Grade II urinary and rectal toxicities occurred in 4% of patients with no higher Grade acute toxicities. One Grade II late urinary toxicity occurred with no other Grade II or higher late toxicities. At a median 17-month (8 - 27 month, range) follow-up the 36.25 Gy dose level had 2 low- and 2 high-risk patients fail biochemically (biopsy showed 2 low- and 1 high-risk patients were disease-free in the gland). Acute Grade II urinary and rectal toxicities occurred in 4.7% (12/253) and 3.6% (9/253) of patients, respectively. For those patients with a minimum of 12 months follow-up, 5.8% (12/206) had late Grade II urinary toxicity and 2.9% (6/206) had late Grade II rectal toxicities. One late Grade III urinary toxicity occurred; no Grade IV toxicities occurred. For both dose levels at 17 months, bowel and urinary QOL returned to baseline values; sexual QOL decreased by 10%.</p> <p>Conclusions</p> <p>The low toxicity and maintained QOL are highly encouraging. Additional follow-up is needed to determine long-term biochemical control and maintenance of low toxicity and QOL.</p

    The δ subunit and NTPase HelD institute a two-pronged mechanism for RNA polymerase recycling

    Get PDF
    Cellular RNA polymerases RNAPs can become trapped on DNA or RNA, threatening genome stability and limiting free enzyme pools, but how RNAP recycling into active states is achieved remains elusive. In Bacillus subtilis, the RNAP amp; 948; subunit and NTPase HelD have been implicated in RNAP recycling. We structurally analyzed Bacillus subtilis RNAP amp; 948; HelD complexes. HelD has two long arms a Gre cleavage factor like coiled coil inserts deep into the RNAP secondary channel, dismantling the active site and displacing RNA, while a unique helical protrusion inserts into the main channel, prying the amp; 946; and amp; 946; amp; 8242; subunits apart and, aided by amp; 948;, dislodging DNA. RNAP is recycled when, after releasing trapped nucleic acids, HelD dissociates from the enzyme in an ATP dependent manner. HelD abundance during slow growth and a dimeric RNAP amp; 948; HelD 2 structure that resembles hibernating eukaryotic RNAP I suggest that HelD might also modulate active enzyme pools in response to cellular cue

    Long-term biochemical results after high-dose-rate intensity modulated brachytherapy with external beam radiotherapy for high risk prostate cancer

    Get PDF
    Abstract Background Biochemical control from series in which radical prostatectomy is performed for patients with unfavorable prostate cancer and/or low dose external beam radiation therapy are given remains suboptimal. The treatment regimen of HDR brachytherapy and external beam radiotherapy is a safe and very effective treatment for patients with high risk localized prostate cancer with excellent biochemical control and low toxicity.</p

    Roadmap on Machine learning in electronic structure

    Get PDF
    AbstractIn recent years, we have been witnessing a paradigm shift in computational materials science. In fact, traditional methods, mostly developed in the second half of the XXth century, are being complemented, extended, and sometimes even completely replaced by faster, simpler, and often more accurate approaches. The new approaches, that we collectively label by machine learning, have their origins in the fields of informatics and artificial intelligence, but are making rapid inroads in all other branches of science. With this in mind, this Roadmap article, consisting of multiple contributions from experts across the field, discusses the use of machine learning in materials science, and share perspectives on current and future challenges in problems as diverse as the prediction of materials properties, the construction of force-fields, the development of exchange correlation functionals for density-functional theory, the solution of the many-body problem, and more. In spite of the already numerous and exciting success stories, we are just at the beginning of a long path that will reshape materials science for the many challenges of the XXIth century

    Competition of Escherichia coli DNA Polymerases I, II and III with DNA Pol IV in Stressed Cells

    Get PDF
    Escherichia coli has five DNA polymerases, one of which, the low-fidelity Pol IV or DinB, is required for stress-induced mutagenesis in the well-studied Lac frameshift-reversion assay. Although normally present at ∼200 molecules per cell, Pol IV is recruited to acts of DNA double-strand-break repair, and causes mutagenesis, only when at least two cellular stress responses are activated: the SOS DNA-damage response, which upregulates DinB ∼10-fold, and the RpoS-controlled general-stress response, which upregulates Pol IV about 2-fold. DNA Pol III was also implicated but its role in mutagenesis was unclear. We sought in vivo evidence on the presence and interactions of multiple DNA polymerases during stress-induced mutagenesis. Using multiply mutant strains, we provide evidence of competition of DNA Pols I, II and III with Pol IV, implying that they are all present at sites of stress-induced mutagenesis. Previous data indicate that Pol V is also present. We show that the interactions of Pols I, II and III with Pol IV result neither from, first, induction of the SOS response when particular DNA polymerases are removed, nor second, from proofreading of DNA Pol IV errors by the editing functions of Pol I or Pol III. Third, we provide evidence that Pol III itself does not assist with but rather inhibits Pol IV-dependent mutagenesis. The data support the remaining hypothesis that during the acts of DNA double-strand-break (DSB) repair, shown previously to underlie stress-induced mutagenesis in the Lac system, there is competition of DNA polymerases I, II and III with DNA Pol IV for action at the primer terminus. Up-regulation of Pol IV, and possibly other stress-response-controlled factor(s), tilt the competition in favor of error-prone Pol IV at the expense of more accurate polymerases, thus producing stress-induced mutations. This mutagenesis assay reveals the DNA polymerases operating in DSB repair during stress and also provides a sensitive indicator for DNA polymerase competition and choice in vivo
    corecore