61 research outputs found

    A customized monocyte cDNA microarray for diagnosis of rheumatoid arthritis and prognosis of anti-TNF-α therapy

    Get PDF
    Background In rheumatoid arthritis (RA) macrophages (Mf) play a pivotal role. They become highly activated in synovitis and at the cartilage–pannus junction. Furthermore, therapeutic neutralization of molecules produced by activated Mf lead to clinical improvement in RA, and circulating monocytes (MO) of the peripheral blood in patients with RA spontaneously express proinflammatory genes (IL-1β, IL-6, TNF). Methods A custom RA-MO cDNA microarray was generated using differentially expressed genes obtained from gene subtraction and from comparative whole genome wide U133A analysis in normal donors, active and anti-TNF-α created RA patients. Genes were selected using MAS 5.0, multtest and PAM. The custom microarray consists of 313 genes including guide dots, and positive (housekeeping genes and spike controls) and negative controls for image and statistical analysis. Each probe was spotted in 16 replicates. Results The RA-MO chipset-II was validated using the following: non-stimulated and LPS, PMA, Vit.D3+LPS, PMA+LPS stimulated U937 cells; nonstimulated and LPS stimulated healthy donor MO; MO from normal donors (n = 3) and RA patients before and during anti-TNF-α treatment (n = 5 each); and synovial tissue from normal individuals (n = 2) and RA patients (n = 2). Not only LPS/PMA regulated genes but also RA specific and anti-TNF-α regulated genes were validated. In addition, we could clarify whether these genes are differentially transcribed only in MO or whether they can also be found in RA tissue Mf. Our data indicate a high degree of reproducibility that is sufficient for diagnostic applications and therapy monitoring. Conclusion The RA-MO chipset-II microarray is competitive and flexible for enlargement of the number of genes. The current gene selection will contribute to validating the role of monocytes in disease activity, to therapeutic interventions, and may improve the knowledge on the regulation of pathways in activated monocytes in chronic inflammation

    Removal of Misincorporated Ribonucleotides from Prokaryotic Genomes: An Unexpected Role for Nucleotide Excision Repair

    Get PDF
    Stringent steric exclusion mechanisms limit the misincorporation of ribonucleotides by high-fidelity DNA polymerases into genomic DNA. In contrast, low-fidelity Escherichia coli DNA polymerase V (pol V) has relatively poor sugar discrimination and frequently misincorporates ribonucleotides. Substitution of a steric gate tyrosine residue with alanine (umuC_Y11A) reduces sugar selectivity further and allows pol V to readily misincorporate ribonucleotides as easily as deoxynucleotides, whilst leaving its poor base-substitution fidelity essentially unchanged. However, the mutability of cells expressing the steric gate pol V mutant is very low due to efficient repair mechanisms that are triggered by the misincorporated rNMPs. Comparison of the mutation frequency between strains expressing wild-type and mutant pol V therefore allows us to identify pathways specifically directed at ribonucleotide excision repair (RER). We previously demonstrated that rNMPs incorporated by umuC_Y11A are efficiently removed from DNA in a repair pathway initiated by RNase HII. Using the same approach, we show here that mismatch repair and base excision repair play minimal back-up roles in RER in vivo. In contrast, in the absence of functional RNase HII, umuC_Y11A-dependent mutagenesis increases significantly in ΔuvrA, uvrB5 and ΔuvrC strains, suggesting that rNMPs misincorporated into DNA are actively repaired by nucleotide excision repair (NER) in vivo. Participation of NER in RER was confirmed by reconstituting ribonucleotide-dependent NER in vitro. We show that UvrABC nuclease-catalyzed incisions are readily made on DNA templates containing one, two, or five rNMPs and that the reactions are stimulated by the presence of mispaired bases. Similar to NER of DNA lesions, excision of rNMPs proceeds through dual incisions made at the 8th phosphodiester bond 5′ and 4th-5th phosphodiester bonds 3′ of the ribonucleotide. Ribonucleotides misinserted into DNA can therefore be added to the broad list of helix-distorting modifications that are substrates for NER

    Agreement of Self-Reported and Genital Measures of Sexual Arousal in Men and Women: A Meta-Analysis

    Get PDF
    The assessment of sexual arousal in men and women informs theoretical studies of human sexuality and provides a method to assess and evaluate the treatment of sexual dysfunctions and paraphilias. Understanding measures of arousal is, therefore, paramount to further theoretical and practical advances in the study of human sexuality. In this meta-analysis, we review research to quantify the extent of agreement between self-reported and genital measures of sexual arousal, to determine if there is a gender difference in this agreement, and to identify theoretical and methodological moderators of subjective-genital agreement. We identified 132 peer- or academically-reviewed laboratory studies published between 1969 and 2007 reporting a correlation between self-reported and genital measures of sexual arousal, with total sample sizes of 2,505 women and 1,918 men. There was a statistically significant gender difference in the agreement between self-reported and genital measures, with men (r = .66) showing a greater degree of agreement than women (r = .26). Two methodological moderators of the gender difference in subjective-genital agreement were identified: stimulus variability and timing of the assessment of self-reported sexual arousal. The results have implications for assessment of sexual arousal, the nature of gender differences in sexual arousal, and models of sexual response

    Neonatal Brain Injury and Neuroanatomy of Memory Processing following Very Preterm Birth in Adulthood: An fMRI Study

    Get PDF
    Altered functional neuroanatomy of high-order cognitive processing has been described in very preterm individuals (born before 33 weeks of gestation; VPT) compared to controls in childhood and adolescence. However, VPT birth may be accompanied by different types of adverse neonatal events and associated brain injury, the severity of which may have differential effects on brain development and subsequent neurodevelopmental outcome. We conducted a functional magnetic resonance imaging (fMRI) study to investigate how differing degrees of neonatal brain injury, detected by neonatal ultrasounds, affect the functional neuroanatomy of memory processing in VPT young adults. We used a verbal paired associates learning task, consisting of four encoding, four cued-recall and four baseline condition blocks. To further investigate whether differences in neural activation between the groups were modulated by structural brain changes, structural MRI data were also collected. We studied 12 VPT young adults with a history of periventricular haemorrhage with associated ventricular dilatation, 17 VPT individuals with a history of uncomplicated periventricular haemorrhage, 12 individuals with normal ultrasonographic findings, and 17 controls. Results of a linear trend analysis demonstrated that during completion of the paired associates learning task right frontal and right parietal brain activation decreased as the severity of neonatal brain injury increased. There were no statistically significant between-group differences in on-line task performance and participants' intelligence quotient (IQ) at assessment. This pattern of differential activation across the groups was observed particularly in the right middle frontal gyrus during encoding and in the right posterior cingulate gyrus during recall. Structural MRI data analysis revealed that grey matter volume in the right superior temporal gyrus, right cerebellum, left middle temporal gyrus, right globus pallidus and right medial frontal gyrus decreased with increasing severity of neonatal brain injury. However, the significant between-group functional neuroanatomical differences were not directly attributable to the detected structural regional differences

    A review of the current treatment methods for posthaemorrhagic hydrocephalus of infants

    Get PDF
    Posthaemorrhagic hydrocephalus (PHH) is a major problem for premature infants, generally requiring lifelong care. It results from small blood clots inducing scarring within CSF channels impeding CSF circulation. Transforming growth factor – beta is released into CSF and cytokines stimulate deposition of extracellular matrix proteins which potentially obstruct CSF pathways. Prolonged raised pressures and free radical damage incur poor neurodevelopmental outcomes. The most common treatment involves permanent ventricular shunting with all its risks and consequences

    Molecular fingerprinting of radiation resistant tumors: Can we apprehend and rehabilitate the suspects?

    Get PDF
    Radiation therapy continues to be one of the more popular treatment options for localized prostate cancer. One major obstacle to radiation therapy is that there is a limit to the amount of radiation that can be safely delivered to the target organ. Emerging evidence suggests that therapeutic agents targeting specific molecules might be combined with radiation therapy for more effective treatment of tumors. Recent studies suggest that modulation of these molecules by a variety of mechanisms (e.g., gene therapy, antisense oligonucleotides, small interfering RNA) may enhance the efficacy of radiation therapy by modifying the activity of key cell proliferation and survival pathways such as those controlled by Bcl-2, p53, Akt/PTEN and cyclooxygenase-2. In this article, we summarize the findings of recent investigations of radiosensitizing agents in the treatment of prostate cancer

    Behavioural and educational outcomes following extremely preterm birth : current controversies and future directions

    Get PDF
    As a consequence of improved survival rates for extremely preterm (EP; <28 weeks of gestation) births, there is a growing body of evidence detailing the impact of extreme prematurity on outcomes throughout childhood and adolescence. Historically, attention first focused on documenting rates of sensory impairments and severe neurodevelopmental disabilities. However, over recent years, there has been growing interest in the impact of EP birth on long term mental health and educational outcomes. In this chapter we review literature relating to the impact of EP birth on attention, social and emotional problems, psychiatric disorders and educational outcomes. We also outline current controversies in the field. In particular, we present emergent research exploring developmental trajectories to determine whether the sequelae associated with EP birth represent a developmental delay or persistent deficit, and we consider what approaches to intervention may be most fruitful in improving behavioural and educational outcomes in this population
    corecore