834 research outputs found

    The Morphology and Adhesion Mechanism of Octopus vulgaris Suckers

    Get PDF
    The octopus sucker represents a fascinating natural system performing adhesion on different terrains and substrates. Octopuses use suckers to anchor the body to the substrate or to grasp, investigate and manipulate objects, just to mention a few of their functions. Our study focuses on the morphology and adhesion mechanism of suckers in Octopus vulgaris. We use three different techniques (MRI, ultrasonography, and histology) and a 3D reconstruction approach to contribute knowledge on both morphology and functionality of the sucker structure in O. vulgaris. The results of our investigation are two-fold. First, we observe some morphological differences with respect to the octopus species previously studied (i.e., Octopus joubini, Octopus maya, Octopus bimaculoides/bimaculatus and Eledone cirrosa). In particular, in O. vulgaris the acetabular chamber, that is a hollow spherical cavity in other octopuses, shows an ellipsoidal cavity which roof has an important protuberance with surface roughness. Second, based on our findings, we propose a hypothesis on the sucker adhesion mechanism in O. vulgaris. We hypothesize that the process of continuous adhesion is achieved by sealing the orifice between acetabulum and infundibulum portions via the acetabular protuberance. We suggest this to take place while the infundibular part achieves a completely flat shape; and, by sustaining adhesion through preservation of sucker configuration. In vivo ultrasonographic recordings support our proposed adhesion model by showing the sucker in action. Such an underlying physical mechanism offers innovative potential cues for developing bioinspired artificial adhesion systems. Furthermore, we think that it could possibly represent a useful approach in order to investigate any potential difference in the ecology and in the performance of adhesion by different species

    Recording electrical activity from the brain of behaving octopus

    Get PDF
    : Octopuses, which are among the most intelligent invertebrates,1,2,3,4 have no skeleton and eight flexible arms whose sensory and motor activities are at once autonomous and coordinated by a complex central nervous system.5,6,7,8 The octopus brain contains a very large number of neurons, organized into numerous distinct lobes, the functions of which have been proposed based largely on the results of lesioning experiments.9,10,11,12,13 In other species, linking brain activity to behavior is done by implanting electrodes and directly correlating electrical activity with observed animal behavior. However, because the octopus lacks any hard structure to which recording equipment can be anchored, and because it uses its eight flexible arms to remove any foreign object attached to the outside of its body, in vivo recording of electrical activity from untethered, behaving octopuses has thus far not been possible. Here, we describe a novel technique for inserting a portable data logger into the octopus and implanting electrodes into the vertical lobe system, such that brain activity can be recorded for up to 12 h from unanesthetized, untethered octopuses and can be synchronized with simultaneous video recordings of behavior. In the brain activity, we identified several distinct patterns that appeared consistently in all animals. While some resemble activity patterns in mammalian neural tissue, others, such as episodes of 2 Hz, large amplitude oscillations, have not been reported. By providing an experimental platform for recording brain activity in behaving octopuses, our study is a critical step toward understanding how the brain controls behavior in these remarkable animals

    Analysis of acoustic emission during the melting of embedded indium particles in an aluminum matrix: a study of plastic strain accommodation during phase transformation

    Full text link
    Acoustic emission is used here to study melting and solidification of embedded indium particles in the size range of 0.2 to 3 um in diameter and to show that dislocation generation occurs in the aluminum matrix to accommodate a 2.5% volume change. The volume averaged acoustic energy produced by indium particle melting is similar to that reported for bainite formation upon continuous cooling. A mechanism of prismatic loop generation is proposed to accommodate the volume change and an upper limit to the geometrically necessary increase in dislocation density is calculated as 4.1 x 10^9 cm^-2 for the Al-17In alloy. Thermomechanical processing is also used to change the size and distribution of the indium particles within the aluminum matrix. Dislocation generation with accompanied acoustic emission occurs when the melting indium particles are associated with grain boundaries or upon solidification where the solid-liquid interfaces act as free surfaces to facilitate dislocation generation. Acoustic emission is not observed for indium particles that require super heating and exhibit elevated melting temperatures. The acoustic emission work corroborates previously proposed relaxation mechanisms from prior internal friction studies and that the superheat observed for melting of these micron-sized particles is a result of matrix constraint.Comment: Presented at "Atomistic Effects in Migrating Interphase Interfaces - Recent Progress and Future Study" TMS 201

    Cutting edges at random in large recursive trees

    Get PDF
    We comment on old and new results related to the destruction of a random recursive tree (RRT), in which its edges are cut one after the other in a uniform random order. In particular, we study the number of steps needed to isolate or disconnect certain distinguished vertices when the size of the tree tends to infinity. New probabilistic explanations are given in terms of the so-called cut-tree and the tree of component sizes, which both encode different aspects of the destruction process. Finally, we establish the connection to Bernoulli bond percolation on large RRT's and present recent results on the cluster sizes in the supercritical regime.Comment: 29 pages, 3 figure

    Nurses\u27 Alumnae Association Bulletin - Volume 16 Number 1

    Get PDF
    Alumnae Notes ANA Biennial Convention Cancer of the Cervix, Uterus and Ovaries Committee Reports Digest of Alumnae Association Meetings Greetings from Miss Childs Greetings from the President Graduation Awards - 1950 Isotopes and the Nurse - Dr. T.P. Eberhard Marriages Necrology New Arrivals Nursing Care in Heart Disease with Pulmonary Infarction Nursing Care of a Mitral Commissurotomy Physical Advances at Jefferson - 1950 Policies of the Private Duty Nurses\u27 Registry Staff Activities, 1950-1951 Students\u27 Corner The Department of Surgical Research - Drs. Templeton and Gibbon White Haven and Barton Memorial Division

    Psychologizing indexes of societal progress: Accounting for cultural diversity in preferred developmental pathways

    Get PDF
    Since the Second World War, the dominating paradigm of societal development has focused on economic growth. While economic growth has improved the quality of human life in a variety of ways, we posit that the identification of economic growth as the primary societal goal is culture-blind because preferences for developmental pathways likely vary between societies. We argue that the cultural diversity of developmental goals and the pathways leading to these goals could be reflected in a culturally sensitive approach to assessing societal development. For the vast majority of post-materialistic societies, it is an urgent necessity to prepare culturally sensitive compasses on how to develop next, and to start conceptualizing growth in a more nuanced and culturally responsive way. Furthermore, we propose that cultural sensitivity in measuring societal growth could also be applied to existing development indicators (e.g. the Human Development Index). We call for cultural researchers, in cooperation with development economists and other social scientists, to prepare a new cultural map of developmental goals, and to create and adapt development indexes that are more culturally sensitive. This innovation could ultimately help social planners understand the diverse pathways of development and assess the degree to which societies are progressing in a self-determined and indigenously valued manner.info:eu-repo/semantics/acceptedVersio

    Magneto-optical signature of massless Kane electrons in Cd3As2

    Full text link
    We report on optical reflectivity experiments performed on Cd3As2 over a broad range of photon energies and magnetic fields. The observed response clearly indicates the presence of 3D massless charge carriers. The specific cyclotron resonance absorption in the quantum limit implies that we are probing massless Kane electrons rather than symmetry-protected 3D Dirac particles. The latter may appear at a smaller energy scale and are not directly observed in our infrared experiments.Comment: 5 pages, 4 figures + supplementary materials (17 pages), to be published in Phys. Rev. Let

    Advanced cryo-tomography workflow developments - correlative microscopy, milling automation and cryo-lift-out

    No full text
    Cryo-electron tomography (cryo-ET) is a groundbreaking technology for 3D visualisation and analysis of biomolecules in the context of cellular structures. It allows structural investigations of single proteins as well as their spatial arrangements within the cell. Cryo-tomograms provide a snapshot of the complex, heterogeneous and transient subcellular environment. Due to the excellent structure preservation in amorphous ice, it is possible to study interactions and spatial relationships of proteins in their native state without interference caused by chemical fixatives or contrasting agents. With the introduction of focused ion beam (FIB) technology, the preparation of cellular samples for electron tomography has become much easier and faster. The latest generation of integrated FIB and scanning electron microscopy (SEM) instruments (dual beam microscopes), specifically designed for cryo-applications, provides advances in automation, imaging and the preparation of high-pressure frozen bulk samples using cryo-lift-out technology. In addition, correlative cryo-fluorescence microscopy provides cellular targeting information through integrated software and hardware interfaces. The rapid advances, based on the combination of correlative cryo-microscopy, cryo-FIB and cryo-ET, have already led to a wealth of new insights into cellular processes and provided new 3D image data of the cell. Here we introduce our recent developments within the cryo-tomography workflow, and we discuss the challenges that lie ahead. Lay Description This article describes our recent developments for the cryo-electron tomography (cryo-ET) workflow. Cryo-ET offers superior structural preservation and provides 3D snapshots of the interior of vitrified cells at molecular resolution. Before a cellular sample can be imaged by cryo-ET, it must be made accessible for transmission electron microscopy. This is achieved by preparing a 200-300 nm thin cryo-lamella from the cellular sample using a cryo-focused ion beam (cryo-FIB) microscope. Cryo-correlative light and electron microscopy (cryo-CLEM) is used within the workflow to guide the cryo-lamella preparation to the cellular areas of interest. We cover a basic introduction of the cryo-ET workflow and show new developments for cryo-CLEM, which facilitate the connection between the cryo-light microscope and the cryo-FIB. Next, we present our progress in cryo-FIB software automation to streamline cryo-lamella preparation. In the final section we demonstrate how the cryo-FIB can be used for 3D imaging and how bulk-frozen cellular samples (obtained by high-pressure freezing) can be processed using the newly developed cryo-lift-out technology
    corecore