11 research outputs found

    Discovery of a strong spiral magnetic field crossing the inner pseudoring of NGC 4736

    Full text link
    We report the discovery of a coherent magnetic spiral structure within the nearby ringed Sab galaxy NGC 4736. High sensitivity radio polarimetric data obtained with the VLA at 8.46GHz and 4.86GHz show a distinct ring of total radio emission precisely corresponding to the bright inner pseudoring visible in other wavelengths. However, unlike the total radio emission, the polarized radio emission reveals a clear pattern of ordered magnetic field of spiral shape, emerging from the galactic centre. The magnetic vectors do not follow the tightly-wrapped spiral arms that characterize the inner pseudoring, but instead cross the ring with a constant and large pitch angle of about 35deg. The ordered field is thus not local adjusted to the pattern of star-formation activity, unlike what is usually observed in grand-design spirals. The observed asymmetric distribution of Faraday rotation suggests the possible action of a large-scale MHD dynamo. The strong magnetic total and regular field within the ring (up to 30microG and 13microG, respectively) indicates that a highly efficient process of magnetic field amplification is under way, probably related to secular evolutionary processes in the galaxy.Comment: Accepted for publication in the Astrophysical Journal Letters, 5 pages, 5 color figure

    The non-thermal superbubble in IC 10 : the generation of cosmic ray electrons caught in the act

    Get PDF
    Superbubbles are crucial for stellar feedback, with supposedly high (of the order of 10 per cent) thermalization rates. We combined multiband radio continuum observations from the Very Large Array (VLA) with Effelsberg data to study the non-thermal superbubble (NSB) in IC 10, a starburst dwarf irregular galaxy in the Local Group. Thermal emission was subtracted using a combination of Balmer Hα and VLA 32 GHz continuum maps. The bubble’s nonthermal spectrum between 1.5 and 8.8 GHz displays curvature and can be well fitted with a standard model of an ageing cosmic ray electron population. With a derived equipartition magnetic field strength of 44 ±8 μG, and measuring the radiation energy density from Spitzer MIPS maps as 5±1×10−11 erg cm−3, we determine, based on the spectral curvature, a spectral age of the bubble of 1.0 ± 0.3 Myr. Analysis of the LITTLE THINGS HI data cube shows an expanding HI hole with 100 pc diameter and a dynamical age of 3.8 ± 0.3 Myr, centred to within 16 pc on IC 10 X-1, a massive stellar mass black hole (M > 23 M⊙). The results are consistent with the expected evolution for a superbubble with a few massive stars, where a very energetic event like a Type Ic supernova/hypernova has taken place about 1 Myr ago. We discuss alternatives to this interpretationPeer reviewe

    Investigation of the cosmic ray population and magnetic field strength in the halo of NGC 891

    Get PDF
    Context. Cosmic rays and magnetic fields play an important role for the formation and dynamics of gaseous halos of galaxies. Aims. Low-frequency radio continuum observations of edge-on galaxies are ideal to study cosmic-ray electrons (CREs) in halos via radio synchrotron emission and to measure magnetic field strengths. Spectral information can be used to test models of CRE propagation. Free-free absorption by ionized gas at low frequencies allows us to investigate the properties of the warm ionized medium in the disk. Methods. We obtained new observations of the edge-on spiral galaxy NGC 891 at 129-163 MHz with the LOw Frequency ARray (LOFAR) and at 13-18 GHz with the Arcminute Microkelvin Imager (AMI) and combine them with recent high-resolution Very Large Array (VLA) observations at 1-2 GHz, enabling us to study the radio continuum emission over two orders of magnitude in frequency. Results. The spectrum of the integrated nonthermal flux density can be fitted by a power law with a spectral steepening towards higher frequencies or by a curved polynomial. Spectral flattening at low frequencies due to free-free absorption is detected in star-forming regions of the disk. The mean magnetic field strength in the halo is 7 +/- 2 mu G. The scale heights of the nonthermal halo emission at 146 MHz are larger than those at 1.5 GHz everywhere, with a mean ratio of 1.7 +/- 0.3, indicating that spectral ageing of CREs is important and that diffusive propagation dominates. The halo scale heights at 146 MHz decrease with increasing magnetic field strengths which is a signature of dominating synchrotron losses of CREs. On the other hand, the spectral index between 146 MHz and 1.5 GHz linearly steepens from the disk to the halo, indicating that advection rather than diffusion is the dominating CRE transport process. This issue calls for refined modelling of CRE propagation. Conclusions. Free-free absorption is probably important at and below about 150 MHz in the disks of edge-on galaxies. To reliably separate the thermal and nonthermal emission components, to investigate spectral steepening due to CRE energy losses, and to measure magnetic field strengths in the disk and halo, wide frequency coverage and high spatial resolution are indispensable

    Nearby galaxies in the LOFAR Two-metre Sky Survey : I. Insights into the non-linearity of the radio-SFR relation

    Get PDF
    Context. Cosmic rays and magnetic fields are key ingredients in galaxy evolution, regulating both stellar feedback and star formation. Their properties can be studied with low-frequency radio continuum observations that are free from thermal contamination. Aims. We define a sample of 76 nearby (<30 Mpc) galaxies with rich ancillary data in the radio continuum and infrared from the CHANG-ES and KINGFISH surveys, which will be observed with the LOFAR Two-metre Sky Survey (LoTSS) at 144 MHz. Methods. We present maps for 45 of them as part of the LoTSS data release 2 (LoTSS-DR2), where we measure integrated flux densities and study integrated and spatially resolved radio spectral indices. We investigate the radio-star formation rate (SFR) relation using SFRs derived from total infrared and H alpha + 24-mu m emission. Results. The radio-SFR relation at 144 MHz is clearly super-linear with L-144mHz proportional to SFR1,4-1,5. The mean integrated radio spectral index between 144 and approximate to 1400 MHz is = -0.56 +/- 0.14, in agreement with the injection spectral index for cosmic ray electrons (CRE5). However, the radio spectral index maps show variation of spectral indices with flatter spectra associated with star-forming regions and steeper spectra in galaxy outskirts and, in particular, in extra-planar regions. We found that galaxies with high SFRs have steeper radio spectra; we find similar correlations with galaxy size, mass, and rotation speed. Conclusions. Galaxies that are larger and more massive are better electron calorimeters, meaning that the CRE lose a higher fraction of their energy within the galaxies. This explains the super-linear radio-SFR relation, with more massive, star-forming galaxies being radio bright. We propose a semi-calorimetric radio-SFR relation that employs the galaxy mass as a proxy for the calorimetric efficiency

    Magnetic fields in dwarfs versus early-type galaxies

    No full text

    Strong magnetic spiral pattern in a ringed galaxy NGC 4736

    No full text

    Star formation activity in the cluster spiral NGC 4254

    No full text

    The significance of low-frequency interferometric observations for the GPS pulsar flux estimation : the sase of J1740+1000

    No full text
    In this paper we present recent Low Frequency Array observations of the pulsar J1740+1000. We confirm that its spectrum has a turnover at 260 MHz, which is unusual for a typical pulsar. We argue that in this case interferometric imaging provides more accurate pulsar flux estimates than other, more traditional, means such as beamformed observations. We conclude that existing calibration and imaging techniques can be used for a more comprehensive study of the influence of the interstellar medium on the point-like sources at very low frequencies in the near future
    corecore