12 research outputs found

    EASIX and severe endothelial complications after CD19-directed CAR-T Cell therapy-a cohort study

    Get PDF
    BACKGROUND: Endothelial dysfunction is associated with two main complications of chimeric antigen receptor T (CAR-T) cell therapy, cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS). This study evaluates the Endothelial Activation and Stress Index (EASIX) as a prognostic marker for high-grade CRS and ICANS in patients treated with CD19-directed CAR-T cells. METHODS: In this retrospective study, a training cohort of 93 patients from the ZUMA-1 trial and a validation cohort of 121 patients from two independent centers (University Hospital Heidelberg, Charité University Medicine Berlin) were investigated. The primary objective was to assess the predictive capacity of EASIX measured immediately before the start of lymphodepletion (EASIX-pre) for the occurrence of grade =3 CRS and/or ICANS. To explore a possible endothelial link, serum levels of endothelial stress markers (angiopoietin-2, suppressor of tumorigenicity-2, soluble thrombomodulin, and interleukin-8) were determined before lymphodepletion and on day 7 after CART infusion in the validation cohort (n = 47). RESULTS: The prognostic effect of EASIX-pre on grade =3 CRS and/or ICANS was significant in the training cohort [OR 2-fold increase 1.72 (1.26-2.46)] and validated in the independent cohort. An EASIX-pre cutoff >4.67 derived from the training cohort associated with a 4.3-fold increased odds ratio of severe CRS/ICANS in the independent cohort. Serum endothelial distress markers measured on day+7 correlated with EASIX-pre and associated with severe complications. CONCLUSIONS: EASIX-pre is a powerful predictor of severe CRS/ICANS after CD19-directed CART therapy and might be used as a basis for risk-adapted prevention strategies

    Molecular landscape and prognostic impact of FLT3 -ITD insertion site in acute myeloid leukemia : RATIFY study results

    Get PDF
    In acute myeloid leukemia (AML) internal tandem duplications of the FLT3 gene (FLT3- ITD) are associated with poor prognosis. Retrospectively, we investigated the prognostic and predictive impact of FLT3 -ITD insertion site (IS) in 452 patients randomized within the RATIFY trial, which evaluated midostaurin additionally to intensive chemotherapy. Next-generation sequencing identified 908 ITDs, with 643 IS in the juxtamembrane domain (JMD) and 265 IS in the tyrosine kinase domain-1 (TKD1). According to IS, patients were categorized as JMDsole (n = 251, 55%), JMD and TKD1 (JMD/TKD1; n = 117, 26%), and TKD1sole (n = 84, 19%). While clinical variables did not differ among the 3 groups, NPM1 mutation was correlated with JMDsole (P = 0.028). Overall survival (OS) differed significantly, with estimated 4-year OS probabilities of 0.44, 0.50, and 0.30 for JMDsole, JMD/TKD1, and TKD1sole, respectively (P = 0.032). Multivariate (cause-specific) Cox models for OS and cumulative incidence of relapse using allogeneic hematopoietic cell transplantation (HCT) in first complete remission as a time-dependent variable identified TKD1sole as unfavorable and HCT as favorable factors. In addition, Midostaurin exerted a significant benefit only for JMDsole. Our results confirm the distinct molecular heterogeneity of FLT3 -ITD and the negative prognostic impact of TKD1 IS in AML that was not overcome by midostaurin

    Genomic landscape of patients with FLT3-mutated acute myeloid leukemia (AML) treated within the CALGB 10603/RATIFY trial

    Get PDF
    The aim of this study was to characterize the mutational landscape of patients with FLT3-mutated acute myeloid leukemia (AML) treated within the randomized CALGB 10603/RATIFY trial evaluating intensive chemotherapy plus the multi-kinase inhibitor midostaurin versus placebo. We performed sequencing of 262 genes in 475 patients: mutations occurring concurrently with the FLT3-mutation were most frequent in NPM1 (61%), DNMT3A (39%), WT1 (21%), TET2 (12%), NRAS (11%), RUNX1 (11%), PTPN11 (10%), and ASXL1 (8%) genes. To assess effects of clinical and genetic features and their possible interactions, we fitted random survival forests and interpreted the resulting variable importance. Highest prognostic impact was found for WT1 and NPM1 mutations, followed by white blood cell count, FLT3 mutation type (internal tandem duplications vs. tyrosine kinase domain mutations), treatment (midostaurin vs. placebo), ASXL1 mutation, and ECOG performance status. When evaluating two-fold variable combinations the most striking effects were found for WT1:NPM1 (with NPM1 mutation abrogating the negative effect of WT1 mutation), and for WT1:treatment (with midostaurin exerting a beneficial effect in WT1-mutated AML). This targeted gene sequencing study provides important, novel insights into the genomic background of FLT3-mutated AML including the prognostic impact of co-mutations, specific gene-gene interactions, and possible treatment effects of midostaurin

    Multi-platform profiling characterizes molecular subgroups and resistance networks in chronic lymphocytic leukemia

    Get PDF
    Knowledge of the genomic landscape of chronic lymphocytic leukemia (CLL) grows increasingly detailed, providing challenges in contextualizing the accumulated information. To define the underlying networks, we here perform a multi-platform molecular characterization. We identify major subgroups characterized by genomic instability (GI) or activation of epithelial-mesenchymal-transition (EMT)-like programs, which subdivide into non-inflammatory and inflammatory subtypes. GI CLL exhibit disruption of genome integrity, DNA-damage response and are associated with mutagenesis mediated through activation-induced cytidine deaminase or defective mismatch repair. TP53 wild-type and mutated/deleted cases constitute a transcriptionally uniform entity in GI CLL and show similarly poor progression-free survival at relapse. EMT-like CLL exhibit high genomic stability, reduced benefit from the addition of rituximab and EMT-like differentiation is inhibited by induction of DNA damage. This work extends the perspective on CLL biology and risk categories in TP53 wild-type CLL. Furthermore, molecular targets identified within each subgroup provide opportunities for new treatment approaches

    Tree-based identification of predictive factors for non-randomized treatment comparisons

    No full text

    Randomized phase-III study of low-dose cytarabine and etoposide + /− all-trans retinoic acid in older unfit patients with NPM1-mutated acute myeloid leukemia

    No full text
    Abstract The aim of this randomized clinical trial was to evaluate the impact of all-trans retinoic acid (ATRA) in combination with non-intensive chemotherapy in older unfit patients (> 60 years) with newly diagnosed NPM1-mutated acute myeloid leukemia. Patients were randomized (1:1) to low-dose chemotherapy with or without open-label ATRA 45 mg/m2, days 8–28; the dose of ATRA was reduced to 45 mg/m2, days 8–10 and 15 mg/m2, days 11–28 after 75 patients due to toxicity. Up to 6 cycles of cytarabine 20 mg/day s.c., bid, days 1–7 and etoposide 100 mg/day, p.o. or i.v., days 1–3 with (ATRA) or without ATRA (CONTROL) were intended. The primary endpoint was overall survival (OS). Between May 2011 and September 2016, 144 patients (median age, 77 years; range, 64–92 years) were randomized (72, CONTROL; 72, ATRA). Baseline characteristics were balanced between the two study arms. The median number of treatment cycles was 2 in ATRA and 2.5 in CONTROL. OS was significantly shorter in the ATRA compared to the CONTROL arm (p = 0.023; median OS: 5 months versus 9.2 months, 2-years OS rate: 7% versus 10%, respectively). Rates of CR/CRi were not different between treatment arms; infections were more common in ATRA beyond treatment cycle one. The addition of ATRA to low-dose cytarabine plus etoposide in an older, unfit patient population was not beneficial, but rather led to an inferior outcome. The clinical trial is registered at clinicaltrialsregister.eu (EudraCT Number: 2010-023409-37, first posted 14/12/2010)

    Clinical impact of the genomic landscape and leukemogenic trajectories in non-intensively treated elderly acute myeloid leukemia patients

    Get PDF
    To characterize the genomic landscape and leukemogenic pathways of older, newly diagnosed, non-intensively treated patients with AML and to study the clinical implications, comprehensive genetics analyses were performed including targeted DNA sequencing of 263 genes in 604 patients treated in a prospective Phase III clinical trial. Leukemic trajectories were delineated using oncogenetic tree modeling and hierarchical clustering, and prognostic groups were derived from multivariable Cox regression models. Clonal hematopoiesis-related genes (ASXL1, TET2, SRSF2, DNMT3A) were most frequently mutated. The oncogenetic modeling algorithm produced a tree with five branches with ASXL1, DDX41, DNMT3A, TET2, and TP53 emanating from the root suggesting leukemia-initiating events which gave rise to further subbranches with distinct subclones. Unsupervised clustering mirrored the genetic groups identified by the tree model. Multivariable analysis identified FLT3 internal tandem duplications (ITD), SRSF2, and TP53 mutations as poor prognostic factors, while DDX41 mutations exerted an exceptionally favorable effect. Subsequent backwards elimination based on the Akaike information criterion delineated three genetic risk groups: DDX41 mutations (favorable-risk), DDX41(wildtype)/FLT3-ITD(neg)/TP53(wildtype) (intermediate-risk), and FLT3-ITD or TP53 mutations (high-risk). Our data identified distinct trajectories of leukemia development in older AML patients and provide a basis for a clinically meaningful genetic outcome stratification for patients receiving less intensive therapies

    Impact of gemtuzumab ozogamicin on MRD and relapse risk in patients with NPM1-mutated AML: results from the AMLSG 09-09 trial

    No full text
    Monitoring of measurable residual disease (MRD) provides prognostic information in patients with Nucleophosmin1-mutated (NPM1(mut)) acute myeloid leukemia (AML) and represents a powerful tool to evaluate treatment effects within clinical trials. We determined NPM1(mut) transcript levels (TLs) by quantitative reverse-transcription polymerase chain reaction and evaluated the prognostic impact of NPM1(mut) MRD and the effect of gemtuzumab ozogamicin (GO) on NPM1(mut) TLs and the cumulative incidence of relapse (CIR) in patients with NPM1(mut) AML enrolled in the randomized phase 3 AMLSG 09-09 trial. A total of 3733 bone marrow (BM) samples and 3793 peripheral blood (PB) samples from 469 patients were analyzed. NPM1(mut) TL log(10) reduction ≥ 3 and achievement of MRD negativity in BM and PB were significantly associated with a lower CIR rate, after 2 treatment cycles and at end of treatment (EOT). In multivariate analyses, MRD positivity was consistently revealed to be a poor prognostic factor in BM and PB. With regard to treatment effect, the median NPM1(mut) TLs were significantly lower in the GO-Arm across all treatment cycles, resulting in a significantly greater proportion of patients achieving MRD negativity at EOT (56% vs 41%; P = .01). The better reduction in NPM1(mut) TLs after 2 treatment cycles in MRD positive patients by the addition of GO led to a significantly lower CIR rate (4-year CIR, 29.3% vs 45.7%, P = .009). In conclusion, the addition of GO to intensive chemotherapy in NPM1(mut) AML resulted in a significantly better reduction in NPM1(mut) TLs across all treatment cycles, leading to a significantly lower relapse rate

    The shared frameshift mutation landscape of microsatellite-unstable cancers suggests immunoediting during tumor evolution

    No full text
    The immune system can recognize and attack cancer cells, especially those with a high load of mutation-induced neoantigens. Such neoantigens are abundant in DNA mismatch repair (MMR)-deficient, microsatellite-unstable (MSI) cancers. MMR deficiency leads to insertion/deletion (indel) mutations at coding microsatellites (cMS) and to neoantigen-inducing translational frameshifts. Here, we develop a tool to quantify frameshift mutations in MSI colorectal and endometrial cancer. Our results show that frameshift mutation frequency is negatively correlated to the predicted immunogenicity of the resulting peptides, suggesting counterselection of cell clones with highly immunogenic frameshift peptides. This correlation is absent in tumors with Beta-2-microglobulin mutations, and HLA-A*02:01 status is related to cMS mutation patterns. Importantly, certain outlier mutations are common in MSI cancers despite being related to frameshift peptides with functionally confirmed immunogenicity, suggesting a possible driver role during MSI tumor evolution. Neoantigens resulting from shared mutations represent promising vaccine candidates for prevention of MSI cancers. DNA mismatch repair (MMR)-deficient cancers with microsatellite-instability are characterized by a high load of frameshift mutation-derived neoantigens. Here, by mapping the frameshift mutation landscape and predicting the immunogenicity of the resulting peptides, the authors show evidence of immunoediting in MMR-deficient colorectal and endometrial cancers.Hereditary cancer genetic

    Midostaurin plus intensive chemotherapy for younger and older patients with AML and FLT3 internal tandem duplications

    No full text
    We conducted a single-arm phase-II trial (AMLSG 16-10) to evaluate midostaurin with intensive chemotherapy followed by allogeneic hematopoietic-cell transplantation (HCT) and a one-year midostaurin maintenance therapy in adult patients with acute myeloid leukemia (AML) and FLT3 internal tandem duplication (ITD). Patients 18-70 years of age with newly diagnosed FLT3-ITD-positive AML were eligible. Primary and key secondary endpoints were event-free (EFS) and overall survival (OS). Results were compared to a historical cohort of 415 patients treated on 5 prior AMLSG trials; statistical analysis was performed using a double-robust adjustment with propensity score weighting and covariate adjustment. Results were also compared to patients (18-59yrs) treated on the placebo arm of the CALGB 10603/RATIFY trial. The trial accrued 440 patients (18-60yrs, n=312; 61-70yrs, n=128). In multivariate analysis, EFS was significantly in favor of patients treated within the AMLSG 16-10 trial compared to the AMLSG control (HR 0.55; P<0.001); both in younger (HR 0.59; P<0.001) and older patients (HR 0.42; P<0.001). Multivariate analysis also showed a significant beneficial effect on OS compared to the AMLSG control (HR 0.57; P<0.001) as well as to the CALGB 10603/RATIFY trial (HR 0.71; p=0.005). The treatment effect of midostaurin remained significant in sensitivity analysis including allogeneic HCT as a time-dependent covariate. Addition of midostaurin to chemotherapy was safe in younger and older patients. In comparison to historical controls, the addition of midostaurin to intensive therapy led to a significant improvement in outcome in younger and older patients with AML and FLT3-ITD. The AMLSG 16-10 trial is registered at clinicaltrialsregistry.eu (Eudra-CT number 2011-003168-63) and clinicaltrials.gov (NCT01477606)
    corecore