8 research outputs found

    Somatic evolution and global expansion of an ancient transmissible cancer lineage

    Get PDF
    Made available in DSpace on 2019-10-06T15:53:36Z (GMT). No. of bitstreams: 0 Previous issue date: 2019-08-02GPD Charitable TrustLeverhulme TrustThe canine transmissible venereal tumor (CTVT) is a cancer lineage that arose several millennia ago and survives by “metastasizing” between hosts through cell transfer. The somatic mutations in this cancer record its phylogeography and evolutionary history. We constructed a time-resolved phylogeny from 546 CTVT exomes and describe the lineage's worldwide expansion. Examining variation in mutational exposure, we identify a highly context-specific mutational process that operated early in the cancer's evolution but subsequently vanished, correlate ultraviolet-light mutagenesis with tumor latitude, and describe tumors with heritable hyperactivity of an endogenous mutational process. CTVT displays little evidence of ongoing positive selection, and negative selection is detectable only in essential genes. We illustrate how long-lived clonal organisms capture changing mutagenic environments, and reveal that neutral genetic drift is the dominant feature of long-term cancer evolution.Transmissible Cancer Group Department of Veterinary Medicine University of CambridgeAnimal Management in Rural and Remote Indigenous Communities (AMRRIC)World VetsAnimal Shelter Stichting Dierenbescherming SurinameSikkim Anti-Rabies and Animal Health Programme Department of Animal Husbandry Livestock Fisheries and Veterinary Services Government of SikkimRoyal (Dick) School of Veterinary Studies Roslin Institute University of Edinburgh Easter Bush CampusConserLab Animal Preventive Medicine Department Faculty of Animal and Veterinary Sciences University of ChileCorozal Veterinary Hospital University of PanamáSt. George's UniversityNakuru District Veterinary Scheme LtdAnimal Medical CentreInternational Animal Welfare Training Institute UC Davis School of Veterinary MedicineCentro Universitário de Rio Preto (UNIRP)Department of Clinical and Veterinary Surgery São Paulo State University (UNESP)Ladybrand Animal ClinicVeterinary Clinic Sr. Dog'sWorld Vets Latin America Veterinary Training CenterNational Veterinary Research InstituteAnimal ClinicIntermunicipal Stray Animals Care Centre (DIKEPAZ)Animal Protection Society of SamoaFaculty of Veterinary Science University of ZuliaVeterinary Clinic BIOCONTROLFaculty of Veterinary Medicine School of Health Sciences University of ThessalyVeterinary Clinic El Roble Animal Healthcare Network Faculty of Animal and Veterinary Sciences University of ChileOnevetGroup Hospital Veterinário BernaUniversidade Vila VelhaVeterinary Clinic ZoovetservisÉcole Inter-états des Sciences et Médecine Vétérinaires de DakarDepartment of Small Animal Medicine Faculty of Veterinary Medicine Utrecht UniversityVetexpert Veterinary GroupVeterinary Clinic Lopez QuintanaClinique Veterinaire de Grand Fond Saint Gilles les BainsDepartment of Veterinary Sciences University of MessinaFacultad de Medicina Veterinaria y Zootecnia Universidad Autónoma del Estado de MéxicoSchool of Veterinary Medicine Universidad de las AméricasCancer Development and Innate Immune Evasion Lab Champalimaud Center for the UnknownTouray and Meyer Vet ClinicHillside Animal HospitalKampala Veterinary SurgeryAsavet Veterinary CharitiesVets Beyond BordersFaculty of Veterinary Medicine Autonomous University of YucatanLaboratorio de Patología Veterinaria Universidad de CaldasInterdisciplinary Centre of Research in Animal Health (CIISA) Faculty of Veterinary Medicine University of LisbonFour Paws InternationalHelp in SufferingVeterinary Clinic Dr José RojasDepartment of Biotechnology Balochistan University of Information Technology Engineering and Management SciencesCorozal Veterinary ClinicVeterinary Clinic VetmasterState Hospital of Veterinary MedicineJomo Kenyatta University of Agriculture and TechnologyLaboratory of Biomedicine and Regenerative Medicine Department of Clinical Sciences Faculty of Animal and Veterinary Sciences University of ChileFaculty of Veterinary and Agricultural Sciences University of MelbourneAnimal Anti Cruelty LeagueClinical Sciences Department Faculty of Veterinary Medicine BucharestDepartment of Pathology Faculty of Veterinary Medicine Ankara UniversityFaculty of Veterinary Sciences National University of AsuncionLilongwe Society for Protection and Care of Animals (LSPCA)Wellcome Sanger InstituteDepartment of Cellular and Molecular Medicine University of California San DiegoDepartment of Clinical and Veterinary Surgery São Paulo State University (UNESP)Leverhulme Trust: 102942/Z/13/

    Recurrent horizontal transfer identifies mitochondrial positive selection in a transmissible cancer

    Get PDF
    Abstract: Autonomous replication and segregation of mitochondrial DNA (mtDNA) creates the potential for evolutionary conflict driven by emergence of haplotypes under positive selection for ‘selfish’ traits, such as replicative advantage. However, few cases of this phenomenon arising within natural populations have been described. Here, we survey the frequency of mtDNA horizontal transfer within the canine transmissible venereal tumour (CTVT), a contagious cancer clone that occasionally acquires mtDNA from its hosts. Remarkably, one canine mtDNA haplotype, A1d1a, has repeatedly and recently colonised CTVT cells, recurrently replacing incumbent CTVT haplotypes. An A1d1a control region polymorphism predicted to influence transcription is fixed in the products of an A1d1a recombination event and occurs somatically on other CTVT mtDNA backgrounds. We present a model whereby ‘selfish’ positive selection acting on a regulatory variant drives repeated fixation of A1d1a within CTVT cells

    Designing for a Collaborative Industrial Environment: The Case of the ABB

    No full text
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Copyright © 2005 AIGA | The professional association for design. This paper presents the design of a collaborative interface for highly automated, industrial environments. The resulting system, the ABB Powerwall, consists of large, shared interactive displays and several personal mobile information technology devices. On-site service technicians can seamlessly move information back and forth from their mobile devices to the shared display. The system supports various kinds of collaborative work, including making annotations; browsing for information; and visualizing blueprints and threedimensional representations of products and torrents. The design vision has been to provide end users with an unobtrusive way of sharing information, discussing problems and issues with others in front of a large collaborative screen, and the chance of socializing and learning from each other. Located strategically in the specific environment for which it has been designed, the ABB Powerwall is intended to become a natural gathering point that increases interaction, afford gathering, discussions, collaboration, small talk, socializing, and community-making

    Pathology in Practice

    No full text

    Somatic evolution and global expansion of an ancient transmissible cancer lineage

    No full text
    The canine transmissible venereal tumor (CTVT) is a cancer lineage that arose several millennia ago and survives by “metastasizing” between hosts through cell transfer. The somatic mutations in this cancer record its phylogeography and evolutionary history. We constructed a time-resolved phylogeny from 546 CTVT exomes and describe the lineage's worldwide expansion. Examining variation in mutational exposure, we identify a highly context-specific mutational process that operated early in the cancer's evolution but subsequently vanished, correlate ultraviolet-light mutagenesis with tumor latitude, and describe tumors with heritable hyperactivity of an endogenous mutational process. CTVT displays little evidence of ongoing positive selection, and negative selection is detectable only in essential genes. We illustrate how long-lived clonal organisms capture changing mutagenic environments, and reveal that neutral genetic drift is the dominant feature of long-term cancer evolution. © 2019 American Association for the Advancement of Science. All rights reserved

    Recurrent horizontal transfer identifies mitochondrial positive selection in a transmissible cancer

    No full text
    Autonomous replication and segregation of mitochondrial DNA (mtDNA) creates the potential for evolutionary conflict driven by emergence of haplotypes under positive selection for ‘selfish’ traits, such as replicative advantage. However, few cases of this phenomenon arising within natural populations have been described. Here, we survey the frequency of mtDNA horizontal transfer within the canine transmissible venereal tumour (CTVT), a contagious cancer clone that occasionally acquires mtDNA from its hosts. Remarkably, one canine mtDNA haplotype, A1d1a, has repeatedly and recently colonised CTVT cells, recurrently replacing incumbent CTVT haplotypes. An A1d1a control region polymorphism predicted to influence transcription is fixed in the products of an A1d1a recombination event and occurs somatically on other CTVT mtDNA backgrounds. We present a model whereby ‘selfish’ positive selection acting on a regulatory variant drives repeated fixation of A1d1a within CTVT cells. © 2020, The Author(s)
    corecore