1,483 research outputs found

    The Reasons for Discontinuation of Infliximab Treatment in Patients with Crohn's Disease: A Review of Practice at NHS Teaching Hospital

    Get PDF
    Introduction. There is little information on the reasons for discontinuing infliximab treatment in patients with Crohn's disease. The aim of this study was to document these reasons to determine if any were preventable which would allow patients to continue the therapy. Aims & Methods. A review of the medical notes was conducted at the Norfolk and Norwich University Hospital on patients with Crohn's disease treated with infliximab between 2002–2008 to determine the reasons for stopping it. Results. A total of 65 patients were identified who had treatment with infliximab, of whom 23 (35.3%) had their therapy stopped. The reasons for discontinuation of infliximab in the 23 patients were: 47.8% side effects, 17.4% refractory disease, 13.0% achieved remission and did not receive long-term maintenance treatment, 4.34% pregnancy, 4.34% death, and unknown 13.0%. Conclusions. The main reasons for the discontinuation of infliximab were side effects rather than a lack of clinical response

    Effect of body composition methodology on heritability estimation of body fatness

    Get PDF
    Heritability estimates of human body fatness vary widely and the contribution of body composition methodology to this variability is unknown. The effect of body composition methodology on estimations of genetic and environmental contributions to body fatness variation was examined in 78 adult male and female monozygotic twin pairs reared apart or together. Body composition was assessed by six methods - body mass index (BMI), dual energy x-ray absorptiometry (DXA), underwater weighing (UWW), total body water (TBW), bioelectric impedance (BIA), and skinfold thickness. Body fatness was expressed as percent body fat, fat mass, and fat mass/height2 to assess the effect of body fatness expression on heritability estimates. Model-fitting multivariate analyses were used to assess the genetic and environmental components of variance. Mean BMI was 24.5 kg/m2 (range of 17.8-43.4 kg/m2). There was a significant effect of body composition methodology (p<0.001) on heritability estimates, with UWW giving the highest estimate (69%) and BIA giving the lowest estimate (47%) for fat mass/height2. Expression of body fatness as percent body fat resulted in significantly higher heritability estimates (on average 10.3% higher) compared to expression as fat mass/height2 (p=0.015). DXA and TBW methods expressing body fatness as fat mass/height2 gave the least biased heritability assessments, based on the small contribution of specific genetic factors to their genetic variance. A model combining DXA and TBW methods resulted in a relatively low FM/ht2 heritability estimate of 60%, and significant contributions of common and unique environmental factors (22% and 18%, respectively). The body fatness heritability estimate of 60% indicates a smaller contribution of genetic variance to total variance than many previous studies using less powerful research designs have indicated. The results also highlight the importance of environmental factors and possibly genotype by environmental interactions in the etiology of weight gain and the obesity epidemic.R01 AR046124 - NIAMS NIH HHS; R01 MH065322 - NIMH NIH HHS; T32 HL069772 - NHLBI NIH HHS; R21 DK078867 - NIDDK NIH HHS; R37 DA018673 - NIDA NIH HHS; R01 DK076092 - NIDDK NIH HHS; R01 DK079003 - NIDDK NIH HHS; F32 DK009747 - NIDDK NIH HHS; R01 DA018673 - NIDA NIH HH

    New fat free mass - fat mass model for use in physiological energy balance equations

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Forbes equation relating fat-free mass (<it>FFM</it>) to fat mass (<it>FM</it>) has been used to predict longitudinal changes in <it>FFM </it>during weight change but has important limitations when paired with a one dimensional energy balance differential equation. Direct use of the Forbes model within a one dimensional energy balance differential equation requires calibration of a translate parameter for the specific population under study. Comparison of translates to a representative sample of the US population indicate that this parameter is a reflection of age, height, race and gender effects.</p> <p>Results</p> <p>We developed a class of fourth order polynomial equations relating <it>FFM </it>to <it>FM </it>that consider age, height, race and gender as covariates eliminating the need to calibrate a parameter to baseline subject data while providing meaningful individual estimates of <it>FFM</it>. Moreover, the intercepts of these polynomial equations are nonnegative and are consistent with observations of very low <it>FM </it>measured during a severe Somali famine. The models preserve the predictive power of the Forbes model for changes in body composition when compared to results from several longitudinal weight change studies.</p> <p>Conclusions</p> <p>The newly developed <it>FFM</it>-<it>FM </it>models provide new opportunities to compare individuals undergoing weight change to subjects in energy balance, analyze body composition for individual parameters, and predict body composition during weight change when pairing with energy balance differential equations.</p

    Genetic similarity and relationships of DNA fingerprints with performance and with heterosis in Japanese quail lines from two origins and under reciprocal recurrent or within-line selection for early egg production

    Get PDF
    DNA fingerprints of Japanese quail male and female pure line breeders were obtained with probes 33.6, 33.15, and R18.1 and they yielded a total of 59 scoreable bands. Bandsharing (0 < BS < 1) was calculated within and between six quail lines of two origins, and under reciprocal recurrent (AA and BB), within-line (DD and EE) or no (PP and FF) selection. Twenty one pair types were compared. BS was 0.30 higher within line than between lines. BS with the control line was smaller for reciprocal recurrent selection lines than for lines under individual selection. Bandsharing between the two reciprocal recurrent selection lines was 0.19 lower than between lines under individual selection. These results indicate that the two selection methods had different effects on the genetic constitution of the lines, in agreement with previous observations made from the analysis of biochemical polymorphisms with the same set of birds. Egg production and weight traits of pure and crossbred progeny from fingerprinted quail were obtained and compared, and a linear relationship with the measure of bandsharing was estimated. No significant regression coefficient of performance on BS was found over all progeny genetic types. Heterosis from individual matings could also be estimated under the two selection methods since the same birds were parents of both pure and crossbred performance-tested quail. The association of heterosis with the difference between BS of parents of the purebreds and BS of parents of their half-sib crossbreds was favourable and significant for early production traits in lines DD and EE, but no relationship was found in lines AA and BB. These results indicate that the high level of heterosis obtained through reciprocal recurrent selection, and the heterosis observed under within-line selection may have, partly at least, a different genetic determinism. Therefore, the relationship of heterosis with BS may also depend on the past history of selection in the lines

    A local human VÎŽ1 T cell population is associated with survival in nonsmall-cell lung cancer

    Get PDF
    Funding Information: D.B. has consulted for NanoString, reports honoraria from AstraZeneca and has a patent (PCT/GB2020/050221) issued on methods for cancer prognostication. J.R. and M.A.B. have consulted for Achilles Therapeutics. N.M. has stock options in and has consulted for Achilles Therapeutics. N.M. holds European patents relating to targeting neoantigens (PCT/EP2016/059401), identifying patient response to immune checkpoint blockade (PCT/EP2016/071471), determining HLA loss of heterozygosity (PCT/GB2018/052004) and predicting survival rates of patients with cancer (PCT/GB2020/050221). A.H. attended one advisory board for Abbvie, Roche and GRAIL, and reports personal fees from Abbvie, Boehringer Ingelheim, Takeda, AstraZeneca, Daiichi Sankyo, Merck Serono, Merck/MSD, UCB and Roche for delivering general education/training in clinical trials. A.H. owned shares in Illumina and Thermo Fisher Scientific (sold in 2020) and receives fees for membership of Independent Data Monitoring Committees for Roche-sponsored clinical trials. S.A.Q. is co-founder and Chief Scientific Officer of Achilles Therapeutics. A.C.H. is a board member and equity holder in ImmunoQure, AG and Gamma Delta Therapeutics, and is an equity holder in Adaptate Biotherapeutics and chair of the scientific advisory board. C.S. acknowledges grant support from Pfizer, AstraZeneca, Bristol Myers Squibb, Roche-Ventana, Boehringer Ingelheim, Archer Dx Inc (collaboration in minimal residual disease-sequencing technologies) and Ono Pharmaceuticals, is an AstraZeneca Advisory Board member and Chief Investigator for the MeRmaiD1 clinical trial. C.S has consulted for Amgen, AstraZeneca, Bicycle Therapeutics, Bristol Myers Squibb, Celgene, Genentech, GlaxoSmithKline, GRAIL, Illumina, Medixci, Metabomed, MSD, Novartis, Pfizer, Roche-Ventana and Sarah Cannon Research Institute. C.S. has stock options in Apogen Biotechnologies, Epic Biosciences and GRAIL, and has stock options and is co-founder of Achilles Therapeutics. C.S. holds patents relating: to assay technology to detect tumor recurrence (PCT/GB2017/053289); to targeting neoantigens (PCT/EP2016/059401), identifying patent response to immune checkpoint blockade (PCT/EP2016/071471), determining HLA loss of heterozygosity (PCT/GB2018/052004), predicting survival rates of patients with cancer (PCT/GB2020/050221); to treating cancer by targeting Insertion/deletion (indel) mutations (PCT/GB2018/051893); to identifying indel mutation targets (PCT/GB2018/051892); to methods for lung cancer detection (PCT/US2017/028013); and to identifying responders to cancer treatment (PCT/GB2018/051912). The remaining authors declare no competing interests. Funding Information: We thank the Oxford Genomics Centre at the Wellcome Centre for Human Genetics (funded by Wellcome Trust grant no. 203141/Z/16/Z) for the generation and initial processing of the RNA-seq data from sorted TILs. We thank S. Bola for technical support and S. Vanloo for administrative support. The GTEx project was supported by the Common Fund of the Office of the Director of the National Institutes of Health, and by the NCI, NHGRI, NHLBI, NIDA, NIMH and NINDS. Y.W. was supported by a Wellcome Trust Clinical Research Career Development Fellowship (no. 220589/Z/20/Z), an Academy of Medical Sciences Starter Grant for Clinical Lecturers, a National Institute for Health Research (NIHR) Academic Clinical Lectureship and the NIHR University College London Hospitals Biomedical Research Centre. D.B. was supported by funding from the NIHR University College London Hospitals Biomedical Research Centre, the ideas 2 innovation translation scheme at the Francis Crick Institute, the Breast Cancer Research Foundation (BCRF) and a Cancer Research UK (CRUK) Early Detection and Diagnosis Project award. M.J.H. is a CRUK Fellow and has received funding from CRUK, NIHR, Rosetrees Trust, UKI NETs and the NIHR University College London Hospitals Biomedical Research Centre. C.S. is Royal Society Napier Research Professor. This work was supported by the Francis Crick Institute which receives its core funding from CRUK (no. FC001169), the UK Medical Research Council (no. FC001169) and the Wellcome Trust (no. FC001169). This research was funded in whole, or in part, by the Wellcome Trust (no. FC001169). For the purpose of Open Access, the author has applied a CC BY public copyright license to any Author Accepted Manuscript version arising from this submission. C.S. is funded by CRUK (TRACERx, PEACE and CRUK Cancer Immunotherapy Catalyst Network), CRUK Lung Cancer Centre of Excellence (no. C11496/A30025), the Rosetrees Trust, Butterfield and Stoneygate Trusts, NovoNordisk Foundation (ID16584), Royal Society Professorship Enhancement Award (no. RP/EA/180007), the NIHR Biomedical Research Centre at University College London Hospitals, the CRUK–University College London Centre, Experimental Cancer Medicine Centre and the BCRF. This work was supported by a Stand Up To Cancer‐LUNGevity-American Lung Association Lung Cancer Interception Dream Team Translational Research Grant (grant no. SU2C-AACR-DT23-17 to S. M. Dubinett and A. E. Spira). Stand Up To Cancer is a division of the Entertainment Industry Foundation. Research grants are administered by the American Association for Cancer Research, the Scientific Partner of SU2C. C.S. receives funding from the European Research Council (ERC) under the European Union’s Seventh Framework Programme (no. FP7/2007-2013) Consolidator Grant (no. FP7-THESEUS-617844), European Commission ITN (no. FP7-PloidyNet 607722), an ERC Advanced Grant (PROTEUS) from the ERC under the European Union’s Horizon 2020 research and innovation program (grant no. 835297), and Chromavision from the European Union’s Horizon 2020 research and innovation program (grant no. 665233). Publisher Copyright: © 2022, The Author(s).Peer reviewedPublisher PD
    • 

    corecore