8 research outputs found
Digalactosyl-diacylglycerol-deficiency lowers the thermal stability of thylakoid membranes
We investigated the effects of digalactosyl-diacylglycerol (DGDG) on the organization and thermal stability of thylakoid membranes, using wild-type Arabidopsis thaliana and the DGDG-deficient mutant, dgd1. Circular-dichroism measurements reveal that DGDG-deficiency hampers the formation of the chirally organized macrodomains containing the main chlorophyll a/b light-harvesting complexes. The mutation also brings about changes in the overall chlorophyll fluorescence lifetimes, measured in whole leaves as well as in isolated thylakoids. As shown by time-resolved measurements, using the lipophylic fluorescence probe Merocyanine 540 (MC540), the altered lipid composition affects the packing of lipids in the thylakoid membranes but, as revealed by flash-induced electrochromic absorbance changes, the membranes retain their ability for energization. Thermal stability measurements revealed more significant differences. The disassembly of the chiral macrodomains around 55°C, the thermal destabilization of photosystem I complex at 61°C as detected by green gel electrophoresis, as well as the sharp drop in the overall chlorophyll fluorescence lifetime above 45°C (values for the wild type—WT) occur at 4–7°C lower temperatures in dgd1. Similar differences are revealed in the temperature dependence of the lipid packing and the membrane permeability: at elevated temperatures MC540 appears to be extruded from the dgd1 membrane bilayer around 35°C, whereas in WT, it remains lipid-bound up to 45°C and dgd1 and WT membranes become leaky around 35 and 45°C, respectively. It is concluded that DGDG plays important roles in the overall organization of thylakoid membranes especially at elevated temperatures
Fluorescence lifetime imaging microscopy of synechocystis WT cells — variation in photosynthetic performance of individual cells in various strains of sp. PCC 6803
The FLIM (fluorescence lifetime imaging microscopy) technique allows picosecond fluorescence measurements at the level of the individual cell. Using this technique we were able to observe heterogeneity of cyanobacterial cells in a culture grown under controlled conditions and we were able to resolve structural variations within individual cells. It can be concluded that on the one hand the inhomogeneous distribution of photosynthetic pigments within the cell leads to variation of the fluorescence intensity, whereas on the other hand it is impossible to detect variation in the relative amounts of photosystem I and II throughout the cell. Different Synechocystis sp. PCC 6803 strain lines were compared to each other and differences were observed in the average fluorescence lifetimes obtained for individual cells of the various cell lines. The differences can be traced back to variable efficiency of excitation energy transfer from the phycobilisome antenna to the photosystems. We could successfully demonstrate that there is heterogeneity inside individual cells, within individual cultures, and between various wild-type cell lines
Low pH Modulates the Macroorganization and Thermal Stability of PSII Supercomplexes in Grana Membranes
AbstractProtonation of the lumen-exposed residues of some photosynthetic complexes in the grana membranes occurs under conditions of high light intensity and triggers a major photoprotection mechanism known as energy dependent nonphotochemical quenching. We have studied the role of protonation in the structural reorganization and thermal stability of isolated grana membranes. The macroorganization of granal membrane fragments in protonated and partly deprotonated state has been mapped by means of atomic force microscopy. The protonation of the photosynthetic complexes has been found to induce large-scale structural remodeling of grana membranes—formation of extensive domains of the major light-harvesting complex of photosystem II and clustering of trimmed photosystem II supercomplexes, thinning of the membrane, and reduction of its size. These events are accompanied by pronounced thermal destabilization of the photosynthetic complexes, as evidenced by circular dichroism spectroscopy and differential scanning calorimetry. Our data reveal a detailed nanoscopic picture of the initial steps of nonphotochemical quenching