63 research outputs found

    Circulating microRNAs in Cerebrospinal Fluid and Plasma: Sensitive Tool for Detection of Secondary CNS Involvement, Monitoring of Therapy and Prediction of CNS Relapse in Aggressive B-NHL Lymphomas

    Get PDF
    Lymphoma with secondary central nervous system (CNS) involvement represents one of the most aggressive malignancies, with poor prognosis and high mortality. New diagnostic tools for its early detection, response evaluation, and CNS relapse prediction are needed. We analyzed circulating microRNAs in the cerebrospinal fluid (CSF) and plasma of 162 patients with aggressive B-cell non-Hodgkin’s lymphomas (B-NHL) and compared their levels in CNS-involving lymphomas versus in systemic lymphomas, at diagnosis and during treatment and CNS relapse. We identified a set of five oncogenic microRNAs (miR-19a, miR-20a, miR-21, miR-92a, and miR-155) in CSF that detect, with high sensitivity, secondary CNS lymphoma involvement in aggressive B-NHL, including DLBCL, MCL, and Burkitt lymphoma. Their combination into an oncomiR index enables the separation of CNS lymphomas from systemic lymphomas or nonmalignant controls with high sensitivity and specificity, and high Receiver Operating Characteristics (DLBCL AUC = 0.96, MCL = 0.93, BL = 1.0). Longitudinal analysis showed that oncomiR levels reflect treatment efficacy and clinical outcomes, allowing their monitoring and prediction. In contrast to conventional methods, CSF oncomiRs enable detection of early and residual CNS involvement, as well as parenchymal involvement. These circulating oncomiRs increase 1–4 months before CNS relapse, allowing its early detection and improving the prediction of CNS relapse risk in DLBCL. Similar effects were detectable, to a lesser extent, in plasma

    Nanocrystalline lanthanide-doped Lu3Ga5O12 garnets: interesting materials for light-emitting devices

    Get PDF
    Nanocrystalline Lu3Ga5O12, with average particle sizes of 40 nm, doped with a wide variety of luminescent trivalent lanthanide ions have been prepared using a sol\u2013gel technique. The structural and morphological properties of the powders have been investigated by x-ray powder diffraction, high resolution transmission electron microscopy and Raman spectroscopy. Structural data have been refined and are presented for Pr3+, Eu3+, Gd3+, Ho3+, Er3+ and Tm3+ dopants, while room temperature excited luminescence spectra and emission decay curves of Eu3+-, Tm3+- and Ho3+-doped Lu3Ga5O12 nanocrystals have been measured and are discussed. The Eu3+ emission spectrum shows typical bands due to 5D0 \u21927FJ (J = 0, 1, 2, 3, 4) transitions and the broadening of these emission bands with the non-exponential behaviour of the decay curves indicates the presence of structural disorder around the lanthanide ions. Lanthanide-doped nanocrystalline Lu3Ga5O12 materials show better luminescence intensities compared to Y2O3, Gd3Ga5O12 and Y3Al5O12 nanocrystalline hosts. Moreover, the upconversion emission intensity in the blue-green region for the Tm3+- and Ho3+-doped samples shows a significant increase upon 647.5 nm excitation with respect to other common oxide hosts doped with the same lanthanide ions

    Endothelin-1 as a neuropeptide: neurotransmitter or neurovascular effects?

    Get PDF
    Endothelin-1 (ET-1) is an endothelium-derived peptide that also possesses potent mitogenic activity. There is also a suggestion the ET-1 is a neuropeptide, based mainly on its histological identification in both the central and peripheral nervous system in a number of species, including man. A neuropeptide role for ET-1 is supported by studies showing a variety of effects caused following its administration into different regions of the brain and by application to peripheral nerves. In addition there are studies proposing that ET-1 is implicated in a number of neural circuits where its transmitter affects range from a role in pain and temperature control to its action on the hypothalamo-neurosecretory system. While the effect of ET-1 on nerve tissue is beyond doubt, its action on nerve blood flow is often ignored. Here, we review data generated in a number of species and using a variety of experimental models. Studies range from those showing the distribution of ET-1 and its receptors in nerve tissue to those describing numerous neurally-mediated effects of ET-1

    Speciations of Trace Metals in the Accumulation Bogovina on the Crni Timok River

    No full text
    Samples of various ecochemical types of soil were collected in the region of the future accumulation of Lake Bogovina (Serbia). They were analyzed for ten elements using AAS, GFAAS and ICP. Investigation of the nature of association of heavy metals and identification of their substrates was provided by sequential extraction in five steps by successive extraction of soil samples with different mediums. Besides the acid soluble residual phase, most microelements were extracted in the easily and moderate reducible phases. Correlation between manganese and iron from the second and third phase with trace metals from non-residual phases was provided in order to determine their bioavailability. Besides principal component and cluster analysis, the enrichment factors were provided in order to check the impact of anthropogenic factors on trace elements. Most samples contained trace elements mainly from crustal origin with the exception of cadmium
    corecore