110 research outputs found

    Let the Children Listen: A First Approximation to the Sound Environment Assessment of Children through a Soundwalk Approach

    Get PDF
    [EN] The urban sound environment is one of the layers that characterizes a city, and several methodologies are used for its assessment, including the soundwalk approach. However, this approach has been tested mainly with adults. In the work presented here, the aim is to investigate a soundwalk methodology for children, analyzing the sound environment of five different sites of Gothenburg, Sweden, from children’s view-point, giving them the opportunity to take action as an active part of society. Both individual assessment of the sound environment and acoustic data were collected. The findings suggested that among significant results, children tended to rank the sound environment as slightly better when lower levels of background noise were present (LA90). Moreover, traffic dominance ratings appeared as the best predictor among the studied sound sources: when traffic dominated as a sound source, the children rated the sound environment as less good. Additionally, traffic volume appeared as a plausible predictor for sound environment quality judgments, since the higher the traffic volume, the lower the quality of the sound environment. The incorporation of children into urban sound environment research may be able to generate new results in terms of children’s understanding of their sound environment. Moreover, sound environment policies can be developed from and for children.SIPeople Programme (Marie Curie Actions) of the European Union 7th Framework Programme FP7/2007–2013 under REA Grant Agreement No. 290110, SONORUS Urban Sound Planne

    Isolating key features in urban traffic dynamics and noise emission: a study on a signalized intersection and a roundabout

    Get PDF
    Urban planning and transport network are considered as major urban systems with great impact on the sound environment. Most of the work done in transport management and traffic design to improve the quality of both outdoor and indoor sound environment relies on conventional noise mapping software outcomes. This type of tool is based on macroscopic traffic modelling, considering traffic flow as a steady noise source. A commonly implemented practice intended to reduce noise in urban areas is the transformation of a signalised crossing into a roundabout. However, the individual vehicle behaviour becomes relevant in these decisions, where high time-pattern fluctuations are responsible for changes in the quality of the urban sound environment and of human activity. The present paper studies a set of indicators from isolated key features in these two road traffic configurations and their possible variations (acceleration, heavy vehicles, etc.). A VISSIM microscopic traffic simulation model combined with the CNOSSOS-EU noise emission model is used to test cases based on real situations, now in development stage. The approach presented aims to provide stronger basis in the reasoning behind why different road traffic configurations adopted in the urban planning practice give certain effects in relation to the urban sound environment

    Background traffic noise synthesis

    Get PDF
    When planning the development of urban areas, it is important to assess the future acoustic environment. Currently, this evaluation is achieved with the help of acoustic indicators, but they do not suffice for a holistic description of the perceived sound environment. New indicators can be extracted through listening tests and analysis of different acoustic scenarios. However, generating such scenarios using auralisation models for outdoors sound propagation is often computationally highly demanding. Here, a simplified auralisation model is described, focusing on background traffic noise simulation on flat city scenarios. For computational efficiency, the proposed method partly relies on physical models for air attenuation, ground effects and spherical spreading. The doppler effect and the contribution of individual vehicle pass-bys are achieved with the help of modulation transfer functions, and spatial imagery is realised by both non-corellated phase spectra and modulation transfer functions. Power profiles from measurements are used to model rolling noise. The proposed model is assessed through listening tests against the LISTEN demonstrator on its perceived speed and distance from the listener. The perceived speed is matching better to the LISTEN between 70 kmph and 90 kmph, while above 300 m and up to 900 m from the source, the distance is more correctly guessed from the subjects

    Let the Children Listen: A First Approximation to the Sound Environment Assessment of Children through a Soundwalk Approach

    Get PDF
    The urban sound environment is one of the layers that characterizes a city, and several methodologies are used for its assessment, including the soundwalk approach. However, this approach has been tested mainly with adults. In the work presented here, the aim is to investigate a soundwalk methodology for children, analyzing the sound environment of five different sites of Gothenburg, Sweden, from children\u27s view-point, giving them the opportunity to take action as an active part of society. Both individual assessment of the sound environment and acoustic data were collected. The findings suggested that among significant results, children tended to rank the sound environment as slightly better when lower levels of background noise were present (LA90). Moreover, traffic dominance ratings appeared as the best predictor among the studied sound sources: when traffic dominated as a sound source, the children rated the sound environment as less good. Additionally, traffic volume appeared as a plausible predictor for sound environment quality judgments, since the higher the traffic volume, the lower the quality of the sound environment. The incorporation of children into urban sound environment research may be able to generate new results in terms of children\u27s understanding of their sound environment. Moreover, sound environment policies can be developed from and for children

    How can we plan for a good urban sound environment, focusing on road traffic noise?

    Get PDF
    The sound environments in our cities are affected by unwanted sounds, i.e. noise, to an extent that is largely undesired, affecting health and wellbeing. The World Health Organization (WHO) has estimated the burden of disease from traffic-related noise within the western part of Europe and concluded that we each year lose at least one million disability-adjusted life years (DALYs) and that only air pollution has a larger disease burden among environmental factors. The burden of environmental noise is mainly sleep disturbance and annoyance. And the dominant source is road traffic. Methods. This paper describes the mechanisms behind road traffic noise and how we can use them in an urban sound planning perspective to improve the sound environment, as an integral part of sustainable cities and communities. The results are based on calculations and measurements made in previous and ongoing projects. Results. Treatments at source consider tyre, road, engine (whether electric or combustion), driving speed and acceleration, and further vehicle restrictions. Methods for reduction of noise during propagation and more general urban planning aspects include low-height barriers and ground treatments; acoustically absorbing facades and roofs of buildings, e.g. including vegetation; and building morphology and quiet side. Quantitative reductions, in decibels, as well as qualitative aspects are presented. Conclusions. The described possible improvements to the urban sound environment, with focus on road traffic noise as the dominant impairing factor, inform us about how a good urban sound environment can be reachable. However, to reach a good sound environment in reality, the work process of applied urban sound planning demands work across disciplines, also at early-stage planning, instead of traditional noise control applied late in the planning process

    Structural Modification of the Natural Product Valerenic Acid Tunes RXR Homodimer Agonism

    Get PDF
    Retinoid X receptors (RXR) are ligand-sensing transcription factors with a unique role in nuclear receptor signaling as universal heterodimer partners. RXR modulation holds potential in cancer, neurodegeneration and metabolic diseases but adverse effects of RXR activation and lack of selective modulators prevent further exploration as therapeutic target. The natural product valerenic acid has been discovered as RXR agonist with unprecedented preference for RXR subtype and homodimer activation. To capture structural determinants of this activity profile and identify potential for optimization, we have studied effects of structural modification of the natural product on RXR modulation and identified an analogue with enhanced RXR homodimer agonism

    Analysis of LMNB1 duplications in autosomal dominant leukodystrophy provides insights into duplication mechanisms and allele-specific expression

    Get PDF
    Autosomal dominant leukodystrophy (ADLD) is an adult onset demyelinating disorder that is caused by duplications of the lamin B1 (LMNB1) gene. However, as only a few cases have been analyzed in detail, the mechanisms underlying LMNB1 duplications are unclear. We report the detailed molecular analysis of the largest collection of ADLD families studied, to date. We have identified the minimal duplicated region necessary for the disease, defined all the duplication junctions at the nucleotide level and identified the first inverted LMNB1 duplication. We have demonstrated that the duplications are not recurrent; patients with identical duplications share the same haplotype, likely inherited from a common founder and that the duplications originated from intrachromosomal events. The duplication junction sequences indicated that nonhomologous end joining or replication-based mechanisms such fork stalling and template switching or microhomology-mediated break induced repair are likely to be involved. LMNB1 expression was increased in patients’ fibroblasts both at mRNA and protein levels and the three LMNB1 alleles in ADLD patients show equal expression, suggesting that regulatory regions are maintained within the rearranged segment. These results have allowed us to elucidate duplication mechanisms and provide insights into allele-specific LMNB1 expression levels

    The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the Universe

    Get PDF
    The preponderance of matter over antimatter in the early Universe, the dynamics of the supernova bursts that produced the heavy elements necessary for life and whether protons eventually decay --- these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our Universe, its current state and its eventual fate. The Long-Baseline Neutrino Experiment (LBNE) represents an extensively developed plan for a world-class experiment dedicated to addressing these questions. LBNE is conceived around three central components: (1) a new, high-intensity neutrino source generated from a megawatt-class proton accelerator at Fermi National Accelerator Laboratory, (2) a near neutrino detector just downstream of the source, and (3) a massive liquid argon time-projection chamber deployed as a far detector deep underground at the Sanford Underground Research Facility. This facility, located at the site of the former Homestake Mine in Lead, South Dakota, is approximately 1,300 km from the neutrino source at Fermilab -- a distance (baseline) that delivers optimal sensitivity to neutrino charge-parity symmetry violation and mass ordering effects. This ambitious yet cost-effective design incorporates scalability and flexibility and can accommodate a variety of upgrades and contributions. With its exceptional combination of experimental configuration, technical capabilities, and potential for transformative discoveries, LBNE promises to be a vital facility for the field of particle physics worldwide, providing physicists from around the globe with opportunities to collaborate in a twenty to thirty year program of exciting science. In this document we provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess.Comment: Major update of previous version. This is the reference document for LBNE science program and current status. Chapters 1, 3, and 9 provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess. 288 pages, 116 figure

    Vegetation type is an important predictor of the arctic summer land surface energy budget

    Get PDF
    Despite the importance of high-latitude surface energy budgets (SEBs) for land-climate interactions in the rapidly changing Arctic, uncertainties in their prediction persist. Here, we harmonize SEB observations across a network of vegetated and glaciated sites at circumpolar scale (1994-2021). Our variance-partitioning analysis identifies vegetation type as an important predictor for SEB-components during Arctic summer (June-August), compared to other SEB-drivers including climate, latitude and permafrost characteristics. Differences among vegetation types can be of similar magnitude as between vegetation and glacier surfaces and are especially high for summer sensible and latent heat fluxes. The timing of SEB-flux summer-regimes (when daily mean values exceed 0 Wm(-2)) relative to snow-free and -onset dates varies substantially depending on vegetation type, implying vegetation controls on snow-cover and SEB-flux seasonality. Our results indicate complex shifts in surface energy fluxes with land-cover transitions and a lengthening summer season, and highlight the potential for improving future Earth system models via a refined representation of Arctic vegetation types.An international team of researchers finds high potential for improving climate projections by a more comprehensive treatment of largely ignored Arctic vegetation types, underscoring the importance of Arctic energy exchange measuring stations.Peer reviewe
    • 

    corecore