1,750 research outputs found

    The use of indicators for unobservable product qualities: inferences based on consumer sorting

    Get PDF
    Using the dietary supplement black cohosh to demonstrate our method, we employ data on a product characteristic unobservable to consumers to decompose the contribution to consumers’ valuations of observable characteristics into surrogate indicator and direct components. Because consumers are not all “expert appraisers” of the unobservable characteristic, the measured relationship of indicators to the unobservable quality is generally not the one consumers perceive. Consequently, biases that depend upon the nature of consumers’ ineptitude are introduced into the component estimation. The researcher’s inference problem is solved by recognizing that consumers with greater appraisal expertise sort disproportionately to higher quality products. This enables feasible measurement of inept consumers’ relative valuations and conjectures through separate hedonic estimation on high- and low-quality product subsamples. We find that, relative to experts, inept consumers likely underestimate the value of most observable characteristics in indicating black cohosh product authenticity; however they overweight online product ratings.hedonic analysis; surrogate indicators; asymmetric information; pricing strategy; product strategy

    Companion planting to attract pollinators increases the yield and quality of strawberry fruit in gardens and allotments

    Get PDF
    1. Global pollinator declines have led to concern that crop yields might fall as a result of a pollination deficit. Companion planting is a traditional practice thought to increase yield of insect pollinated crops by planting a co-flowering species next to the crop. 2. Using a combination of conventional researcher-led experiments and observational citizen scientist data, we tested the effectiveness of bee-friendly borage (Borago officinalis) as a companion plant to strawberry (Fragaria x ananassa). Insect visitors to the ‘Test’ (strawberry + borage) versus ‘Control’ (strawberry only) plants were observed, and strawberry fruit collected. Strawberries collected during the researcher-led experiment were also subject to fruit measurements and assessments of market quality. 3. Companion plants were found to significantly increase both yield and market quality of strawberries, suggesting an increase in insect pollination per plant. Test strawberries companion planted with borage produced an average of 35% more fruits, and 32% increased yield by weight. Test strawberry plants produced significantly more fruit of higher aesthetic quality when assessed by Marketing Standards for Strawberries. 4. Although there was no significant difference in the overall insect visits, when broken down by broad insect group there were significantly more flies visiting the test strawberries than controls. 5. These results could have implications for both gardeners and commercial growers. As consumers prefer a cosmetically perfect fruit, the production of fruit with increased aesthetics aids food waste reduction

    Solubility and diffusional uptake of hydrogen in quartz at high water pressures: Implications for hydrolytic weakening

    Get PDF
    Attempts to introduce molecular water into dry, natural quartz crystals by diffusive transport and thus weaken them hydrolytically at T = 700°–900°C and PH_2O = 400–1550 MPa have failed. Infrared spectroscopy of hydrothermally annealed single crystals of natural quartz reveals the diffusive uptake of interstitial hydrogen (resulting in hydroxyl groups) at rates similar to those previously proposed for intracrystalline water at high water pressures. The solubility of interstitial hydrogen at these conditions is independent of temperature and pressure; instead, it depends upon the initial aluminum concentration by the local charge neutrality condition [H_i·] = [Al_(Si)′]. The rate of interstitial hydrogen diffusion parallel to c is given by an Arrhenius relation with D_0 = 1.4 × 10^(−1) m^2/s and Q = 200 ± 20 kJ/mol, in close agreement with H diffusivities reported for much lower pressures (PH_2O = 2.5 MPa). Deformation experiments following hydrothermal annealing show no mechanical weakening, and the lack of any detectable broadband absorption associated with molecular water shows that the diffusion rates of structural water are much lower than those of hydrogen. These results are consistent with the available oxygen diffusion data for quartz and with the failure to observe weakening in previous studies of quartz deformation at pressures of 300–500 MPa; they call into question the rapid rates of diffusion originally suggested for the hydrolytic weakening defect. It is suggested that the observed weakening in many previous experiments was complicated by microcracking processes in response to nonhydrostatic stresses and low effective confining pressures. Extensive microcracking may provide a mechanism for molecular water to enter quartz and allow local plastic deformation to occur. It does not appear that molecular water can diffuse far enough into uncracked quartz to allow hydrolytic weakening over annealing times that are feasible in the laboratory

    Role of the Netrin-like Domain of Procollagen C-Proteinase Enhancer-1 in the Control of Metalloproteinase Activity

    Get PDF
    The netrin-like (NTR) domain is a feature of several extracellular proteins, most notably the N-terminal domain of tissue inhibitors of metalloproteinases (TIMPs), where it functions as a strong inhibitor of matrix metalloproteinases and some other members of the metzincin superfamily. The presence of a C-terminal NTR domain in procollagen C-proteinase enhancers (PCPEs), proteins that stimulate the activity of astacin-like tolloid proteinases, raises the possibility that this might also have inhibitory activity. Here we show that both long and short forms of the PCPE-1 NTR domain, the latter beginning at the N-terminal cysteine known to be critical for TIMP activity, show no inhibition, at micromolar concentrations, of several members of the metzincin superfamily, including matrix metalloproteinase-2, bone morphogenetic protein-1 (a tolloid proteinase), and different ADAMTS (a disintegrin and a metalloproteinase with thrombospondin motifs) proteinases from the adamalysin family. In contrast, we report that the NTR domain within PCPE-1 leads to superstimulation of bone morphogenetic protein-1 activity in the presence of heparin and heparan sulfate. These observations point to a new mechanism whereby binding to cell surface-associated or extracellular heparin-like sulfated glycosaminoglycans might provide a means to accelerate procollagen processing in specific cellular and extracellular microenvironments

    Monitoring surface resonances on Co2MnSi(100) by spin-resolved photoelectron spectroscopy

    Full text link
    The magnitude of the spin polarization at the Fermi level of ferromagnetic materials at room temperature is a key property for spintronics. Investigating the Heusler compound Co2_2MnSi a value of 93%\% for the spin polarization has been observed at room temperature, where the high spin polarization is related to a stable surface resonance in the majority band extending deep into the bulk. In particular, we identified in our spectroscopical analysis that this surface resonance is embedded in the bulk continuum with a strong coupling to the majority bulk states. The resonance behaves very bulk-like, as it extends over the first six atomic layers of the corresponding (001)-surface. Our study includes experimental investigations, where the bulk electronic structure as well as surface-related features have been investigated using spin-resolved photoelectron spectroscopy (SR-UPS) and for a larger probing depth spin-integrated high energy x-ray photoemission spectroscopy (HAXPES). The results are interpreted in comparison with first-principles band structure and photoemission calculations which consider all relativistic, surface and high-energy effects properly.Comment: 9 pages, 8 figures, Heusler alloy, electronic structure and photoemissio

    Increased brain-derived neurotrophic factor (BDNF) protein concentrations in mice lacking brain serotonin

    Get PDF
    The interplay between BDNF signaling and the serotonergic system remains incompletely understood. Using a highly sensitive enzyme-linked immunosorbent assay, we studied BDNF concentrations in hippocampus and cortex of two mouse models of altered serotonin signaling: tryptophan hydroxylase (Tph)2-deficient (Tph2 (-/-)) mice lacking brain serotonin and serotonin transporter (SERT)-deficient (SERT(-/-)) mice lacking serotonin re-uptake. Surprisingly, hippocampal BDNF was significantly elevated in Tph2 (-/-) mice, whereas no significant changes were observed in SERT(-/-) mice. Furthermore, BDNF levels were increased in the prefrontal cortex of Tph2 (-/-) but not of SERT(-/-) mice. Our results emphasize the interaction between serotonin signaling and BDNF. Complete lack of brain serotonin induces BDNF expression

    Brain serotonin critically contributes to the biological effects of electroconvulsive seizures

    Get PDF
    Compounds targeting serotonin (5-HT) are widely used as antidepressants. However, the role of 5-HT in mediating the effects of electroconvulsive seizure (ECS) therapy remains undefined. Using Tph2(-/-) mice depleted of brain 5-HT, we studied the effects of ECS on behavior and neurobiology. ECS significantly prolonged the start latency in the elevated O-Maze test, an effect that was abolished in Tph2(-/-) mice. Furthermore, in the absence of 5-HT, the ECS-induced increase in adult neurogenesis and in brain-derived neurotrophic factor signaling in the hippocampus were significantly reduced. Our results indicate that brain 5-HT critically contributes to the neurobiological responses to ECS

    Glioblastoma-induced attraction of endogenous neural precursor cells is associated with improved survival

    Get PDF
    Neural precursor cells contribute to adult neurogenesis and to limited attempts of brain repair after injury. Here we report that in a murine experimental glioblastoma model, endogenous neural precursors migrate from the subventricular zone toward the tumor and surround it. The association of endogenous precursors with syngenic tumor grafts was observed, after injecting red fluorescent protein-labeled G261 cells into the caudate-putamen of transgenic mice, which express green fluorescent protein under a promoter for nestin (nestin-GFP). Fourteen days after inoculation, the nestin-GFP cells surrounded the tumors in several cell layers and expressed markers of early noncommitted and committed precursors. Nestin-GFP cells were further identified by a characteristic membrane current pattern as recorded in acute brain slices. 5-bromo-2-deoxyuridine labeling and dye tracing experiments revealed that the tumor-associated precursors originated from the subventricular zone. Moreover, in cultured explants from the subventricular zone, the neural precursors showed extensive tropism for glioblastomas. Tumor-induced endogenous precursor cell accumulation decreased with age of the recipient; this correlated with increased tumor size and shorter survival times in aged mice. Coinjection of glioblastoma cells with neural precursors improved the survival time of old mice to a level similar to that in young mice. Coculture experiments showed that neural precursors suppressed the rapid increase in tumor cell number, which is characteristic of glioblastoma, and induced glioblastoma cell apoptosis. Our results indicate that tumor cells attract endogenous precursor cells; the presence of precursor cells is antitumorigenic; and this cellular interaction decreases with aging

    Efficient metallic spintronic emitters of ultrabroadband terahertz radiation

    Full text link
    Terahertz electromagnetic radiation is extremely useful for numerous applications such as imaging and spectroscopy. Therefore, it is highly desirable to have an efficient table-top emitter covering the 1-to-30-THz window whilst being driven by a low-cost, low-power femtosecond laser oscillator. So far, all solid-state emitters solely exploit physics related to the electron charge and deliver emission spectra with substantial gaps. Here, we take advantage of the electron spin to realize a conceptually new terahertz source which relies on tailored fundamental spintronic and photonic phenomena in magnetic metal multilayers: ultrafast photo-induced spin currents, the inverse spin-Hall effect and a broadband Fabry-P\'erot resonance. Guided by an analytical model, such spintronic route offers unique possibilities for systematic optimization. We find that a 5.8-nm-thick W/CoFeB/Pt trilayer generates ultrashort pulses fully covering the 1-to-30-THz range. Our novel source outperforms laser-oscillator-driven emitters such as ZnTe(110) crystals in terms of bandwidth, terahertz-field amplitude, flexibility, scalability and cost.Comment: 18 pages, 10 figure

    Cortical cell stiffness is independent of substrate mechanics

    Get PDF
    Cortical stiffness is an important cellular property that changes during migration, adhesion and growth. Previous atomic force microscopy (AFM) indentation measurements of cells cultured on deformable substrates have suggested that cells adapt their stiffness to that of their surroundings. Here we show that the force applied by AFM to a cell results in a significant deformation of the underlying substrate if this substrate is softer than the cell. This ‘soft substrate effect’ leads to an underestimation of a cell’s elastic modulus when analysing data using a standard Hertz model, as confirmed by finite element modelling and AFM measurements of calibrated polyacrylamide beads, microglial cells and fibroblasts. To account for this substrate deformation, we developed a ‘composite cell–substrate model’. Correcting for the substrate indentation revealed that cortical cell stiffness is largely independent of substrate mechanics, which has major implications for our interpretation of many physiological and pathological processes
    • …
    corecore