365 research outputs found

    UPMASK: unsupervised photometric membership assignment in stellar clusters

    Full text link
    We develop a method for membership assignment in stellar clusters using only photometry and positions. The method, UPMASK, is aimed to be unsupervised, data driven, model free, and to rely on as few assumptions as possible. It is based on an iterative process, principal component analysis, clustering algorithm, and kernel density estimations. Moreover, it is able to take into account arbitrary error models. An implementation in R was tested on simulated clusters that covered a broad range of ages, masses, distances, reddenings, and also on real data of cluster fields. Running UPMASK on simulations showed that it effectively separates cluster and field populations. The overall spatial structure and distribution of cluster member stars in the colour-magnitude diagram were recovered under a broad variety of conditions. For a set of 360 simulations, the resulting true positive rates (a measurement of purity) and member recovery rates (a measurement of completeness) at the 90% membership probability level reached high values for a range of open cluster ages (107.1−109.510^{7.1}-10^{9.5} yr), initial masses (0.5−10×1030.5-10\times10^3M_{\sun}) and heliocentric distances (0.5−4.00.5-4.0 kpc). UPMASK was also tested on real data from the fields of the open cluster Haffner~16 and of the closely projected clusters Haffner~10 and Czernik~29. These tests showed that even for moderate variable extinction and cluster superposition, the method yielded useful cluster membership probabilities and provided some insight into their stellar contents. The UPMASK implementation will be available at the CRAN archive.Comment: 12 pages, 13 figures, accepted for publication in Astronomy and Astrophysic

    The first analytical expression to estimate photometric redshifts suggested by a machine

    Get PDF
    We report the first analytical expression purely constructed by a machine to determine photometric redshifts (zphotz_{\rm phot}) of galaxies. A simple and reliable functional form is derived using 41,21441,214 galaxies from the Sloan Digital Sky Survey Data Release 10 (SDSS-DR10) spectroscopic sample. The method automatically dropped the uu and zz bands, relying only on gg, rr and ii for the final solution. Applying this expression to other 1,417,1811,417,181 SDSS-DR10 galaxies, with measured spectroscopic redshifts (zspecz_{\rm spec}), we achieved a mean ⟹(zphot−zspec)/(1+zspec)⟩â‰Č0.0086\langle (z_{\rm phot} - z_{\rm spec})/(1+z_{\rm spec})\rangle\lesssim 0.0086 and a scatter σ(zphot−zspec)/(1+zspec)â‰Č0.045\sigma_{(z_{\rm phot} - z_{\rm spec})/(1+z_{\rm spec})}\lesssim 0.045 when averaged up to zâ‰Č1.0z \lesssim 1.0. The method was also applied to the PHAT0 dataset, confirming the competitiveness of our results when faced with other methods from the literature. This is the first use of symbolic regression in cosmology, representing a leap forward in astronomy-data-mining connection.Comment: 6 pages, 4 figures. Accepted for publication in MNRAS Letter

    The Galactic Center as a point source of neutrons at EeV energies

    Get PDF
    The central region of our Galaxy is a very peculiar environment, containing magnetic fields in excess of 100 mG and gas densities reaching ~ 10^4cm^-3. This region was observed as a strong source of GeV and TeVs gammas, what suggests that a mechanism of proton-neutron conversion could be taking place therein. We propose that the Galactic Center must also be a source of EeV neutrons due to the conversion of ultra high energy cosmic ray protons into neutrons via p-p interactions inside this region. This scenario should be falsifiable by the Pierre Auger Observatory after a few years of full exposure

    Detecting stars, galaxies, and asteroids with Gaia

    Full text link
    (Abridged) Gaia aims to make a 3-dimensional map of 1,000 million stars in our Milky Way to unravel its kinematical, dynamical, and chemical structure and evolution. Gaia's on-board detection software discriminates stars from spurious objects like cosmic rays and Solar protons. For this, parametrised point-spread-function-shape criteria are used. This study aims to provide an optimum set of parameters for these filters. We developed an emulation of the on-board detection software, which has 20 free, so-called rejection parameters which govern the boundaries between stars on the one hand and sharp or extended events on the other hand. We evaluate the detection and rejection performance of the algorithm using catalogues of simulated single stars, double stars, cosmic rays, Solar protons, unresolved galaxies, and asteroids. We optimised the rejection parameters, improving - with respect to the functional baseline - the detection performance of single and double stars, while, at the same time, improving the rejection performance of cosmic rays and of Solar protons. We find that the minimum separation to resolve a close, equal-brightness double star is 0.23 arcsec in the along-scan and 0.70 arcsec in the across-scan direction, independent of the brightness of the primary. We find that, whereas the optimised rejection parameters have no significant impact on the detectability of de Vaucouleurs profiles, they do significantly improve the detection of exponential-disk profiles. We also find that the optimised rejection parameters provide detection gains for asteroids fainter than 20 mag and for fast-moving near-Earth objects fainter than 18 mag, albeit this gain comes at the expense of a modest detection-probability loss for bright, fast-moving near-Earth objects. The major side effect of the optimised parameters is that spurious ghosts in the wings of bright stars essentially pass unfiltered.Comment: Accepted for publication in A&

    Using gamma regression for photometric redshifts of survey galaxies

    Get PDF
    Machine learning techniques offer a plethora of opportunities in tackling big data within the astronomical community. We present the set of Generalized Linear Models as a fast alternative for determining photometric redshifts of galaxies, a set of tools not commonly applied within astronomy, despite being widely used in other professions. With this technique, we achieve catastrophic outlier rates of the order of ~1%, that can be achieved in a matter of seconds on large datasets of size ~1,000,000. To make these techniques easily accessible to the astronomical community, we developed a set of libraries and tools that are publicly available.Comment: Refereed Proceeding of "The Universe of Digital Sky Surveys" conference held at the INAF - Observatory of Capodimonte, Naples, on 25th-28th November 2014, to be published in the Astrophysics and Space Science Proceedings, edited by Longo, Napolitano, Marconi, Paolillo, Iodice, 6 pages, and 1 figur

    Fast emulation of cosmological density fields based on dimensionality reduction and supervised machine-learning

    Full text link
    N-body simulations are the most powerful method to study the non-linear evolution of large-scale structure. However, they require large amounts of computational resources, making unfeasible their direct adoption in scenarios that require broad explorations of parameter spaces. In this work, we show that it is possible to perform fast dark matter density field emulations with competitive accuracy using simple machine-learning approaches. We build an emulator based on dimensionality reduction and machine learning regression combining simple Principal Component Analysis and supervised learning methods. For the estimations with a single free parameter, we train on the dark matter density parameter, Ωm\Omega_m, while for emulations with two free parameters, we train on a range of Ωm\Omega_m and redshift. The method first adopts a projection of a grid of simulations on a given basis; then, a machine learning regression is trained on this projected grid. Finally, new density cubes for different cosmological parameters can be estimated without relying directly on new N-body simulations by predicting and de-projecting the basis coefficients. We show that the proposed emulator can generate density cubes at non-linear cosmological scales with density distributions within a few percent compared to the corresponding N-body simulations. The method enables gains of three orders of magnitude in CPU run times compared to performing a full N-body simulation while reproducing the power spectrum and bispectrum within ∌1%\sim 1\% and ∌3%\sim 3\%, respectively, for the single free parameter emulation and ∌5%\sim 5\% and ∌15%\sim 15\% for two free parameters. This can significantly accelerate the generation of density cubes for a wide variety of cosmological models, opening the doors to previously unfeasible applications, such as parameter and model inferences at full survey scales as the ESA/NASA Euclid mission.Comment: 10 pages, 6 figures. To be submitted to A&A. Comments are welcome

    Gaia GraL: Gaia DR2 Gravitational Lens Systems. VII. XMM-Newton Observations of Lensed Quasars

    Get PDF
    We present XMM-Newton X-ray observations of nine confirmed lensed quasars at 1 less than or similar to z less than or similar to 3 identified by the Gaia Gravitational Lens program. Eight systems are strongly detected, with 0.3-8.0 keV fluxes F (0.3-8.0) greater than or similar to 5 x10(-14) erg cm(-2) s(-1). Modeling the X-ray spectra with an absorbed power law, we derive power-law photon indices and 2-10 keV luminosities for the eight detected quasars. In addition to presenting sample properties for larger quasar population studies and for use in planning for future caustic-crossing events, we also identify three quasars of interest: a quasar that shows evidence of flux variability from previous ROSAT observations, the most closely separated individual lensed sources resolved by XMM-Newton, and one of the X-ray brightest quasars known at z \u3e 3. These sources represent the tip of the discoveries that will be enabled by SRG/eROSITA

    A probabilistic approach to emission-line galaxy classification

    Get PDF
    We invoke a Gaussian mixture model (GMM) to jointly analyse two traditional emission-line classification schemes of galaxy ionization sources: the Baldwin–Phillips–Terlevich (BPT) and WH α versus [N ii]/H α (WHAN) diagrams, using spectroscopic data from the Sloan Digital Sky Survey Data Release 7 and SEAGal/STARLIGHT data sets. We apply a GMM to empirically define classes of galaxies in a three-dimensional space spanned by the log [O iii]/H ÎČ, log [N ii]/H α and log EW(H α) optical parameters. The best-fitting GMM based on several statistical criteria suggests a solution around four Gaussian components (GCs), which are capable to explain up to 97 per cent of the data variance. Using elements of information theory, we compare each GC to their respective astronomical counterpart. GC1 and GC4 are associated with star-forming galaxies, suggesting the need to define a new starburst subgroup. GC2 is associated with BPT's active galactic nuclei (AGN) class and WHAN's weak AGN class. GC3 is associated with BPT's composite class and WHAN's strong AGN class. Conversely, there is no statistical evidence – based on four GCs – for the existence of a Seyfert/low-ionization nuclear emission-line region (LINER) dichotomy in our sample. Notwithstanding, the inclusion of an additional GC5 unravels it. The GC5 appears associated with the LINER and passive galaxies on the BPT and WHAN diagrams, respectively. This indicates that if the Seyfert/LINER dichotomy is there, it does not account significantly to the global data variance and may be overlooked by standard metrics of goodness of fit. Subtleties aside, we demonstrate the potential of our methodology to recover/unravel different objects inside the wilderness of astronomical data sets, without lacking the ability to convey physically interpretable results. The probabilistic classifications from the GMM analysis are publicly available within the COINtoolbox at https://cointoolbox.github.io/GMM_Catalogue/
    • 

    corecore